|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import argparse | 
					
						
						|  | import os.path as osp | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | unet_conversion_map = [ | 
					
						
						|  |  | 
					
						
						|  | ("time_embed.0.weight", "time_embedding.linear_1.weight"), | 
					
						
						|  | ("time_embed.0.bias", "time_embedding.linear_1.bias"), | 
					
						
						|  | ("time_embed.2.weight", "time_embedding.linear_2.weight"), | 
					
						
						|  | ("time_embed.2.bias", "time_embedding.linear_2.bias"), | 
					
						
						|  | ("input_blocks.0.0.weight", "conv_in.weight"), | 
					
						
						|  | ("input_blocks.0.0.bias", "conv_in.bias"), | 
					
						
						|  | ("out.0.weight", "conv_norm_out.weight"), | 
					
						
						|  | ("out.0.bias", "conv_norm_out.bias"), | 
					
						
						|  | ("out.2.weight", "conv_out.weight"), | 
					
						
						|  | ("out.2.bias", "conv_out.bias"), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | unet_conversion_map_resnet = [ | 
					
						
						|  |  | 
					
						
						|  | ("in_layers.0", "norm1"), | 
					
						
						|  | ("in_layers.2", "conv1"), | 
					
						
						|  | ("out_layers.0", "norm2"), | 
					
						
						|  | ("out_layers.3", "conv2"), | 
					
						
						|  | ("emb_layers.1", "time_emb_proj"), | 
					
						
						|  | ("skip_connection", "conv_shortcut"), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | unet_conversion_map_layer = [] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for i in range(4): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for j in range(2): | 
					
						
						|  |  | 
					
						
						|  | hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}." | 
					
						
						|  | sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0." | 
					
						
						|  | unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) | 
					
						
						|  |  | 
					
						
						|  | if i < 3: | 
					
						
						|  |  | 
					
						
						|  | hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}." | 
					
						
						|  | sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1." | 
					
						
						|  | unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) | 
					
						
						|  |  | 
					
						
						|  | for j in range(3): | 
					
						
						|  |  | 
					
						
						|  | hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}." | 
					
						
						|  | sd_up_res_prefix = f"output_blocks.{3*i + j}.0." | 
					
						
						|  | unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) | 
					
						
						|  |  | 
					
						
						|  | if i > 0: | 
					
						
						|  |  | 
					
						
						|  | hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}." | 
					
						
						|  | sd_up_atn_prefix = f"output_blocks.{3*i + j}.1." | 
					
						
						|  | unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) | 
					
						
						|  |  | 
					
						
						|  | if i < 3: | 
					
						
						|  |  | 
					
						
						|  | hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv." | 
					
						
						|  | sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op." | 
					
						
						|  | unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0." | 
					
						
						|  | sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}." | 
					
						
						|  | unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) | 
					
						
						|  |  | 
					
						
						|  | hf_mid_atn_prefix = "mid_block.attentions.0." | 
					
						
						|  | sd_mid_atn_prefix = "middle_block.1." | 
					
						
						|  | unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) | 
					
						
						|  |  | 
					
						
						|  | for j in range(2): | 
					
						
						|  | hf_mid_res_prefix = f"mid_block.resnets.{j}." | 
					
						
						|  | sd_mid_res_prefix = f"middle_block.{2*j}." | 
					
						
						|  | unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def convert_unet_state_dict(unet_state_dict): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | mapping = {k: k for k in unet_state_dict.keys()} | 
					
						
						|  | for sd_name, hf_name in unet_conversion_map: | 
					
						
						|  | mapping[hf_name] = sd_name | 
					
						
						|  | for k, v in mapping.items(): | 
					
						
						|  | if "resnets" in k: | 
					
						
						|  | for sd_part, hf_part in unet_conversion_map_resnet: | 
					
						
						|  | v = v.replace(hf_part, sd_part) | 
					
						
						|  | mapping[k] = v | 
					
						
						|  | for k, v in mapping.items(): | 
					
						
						|  | for sd_part, hf_part in unet_conversion_map_layer: | 
					
						
						|  | v = v.replace(hf_part, sd_part) | 
					
						
						|  | mapping[k] = v | 
					
						
						|  | new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()} | 
					
						
						|  | return new_state_dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | vae_conversion_map = [ | 
					
						
						|  |  | 
					
						
						|  | ("nin_shortcut", "conv_shortcut"), | 
					
						
						|  | ("norm_out", "conv_norm_out"), | 
					
						
						|  | ("mid.attn_1.", "mid_block.attentions.0."), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | for i in range(4): | 
					
						
						|  |  | 
					
						
						|  | for j in range(2): | 
					
						
						|  | hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}." | 
					
						
						|  | sd_down_prefix = f"encoder.down.{i}.block.{j}." | 
					
						
						|  | vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) | 
					
						
						|  |  | 
					
						
						|  | if i < 3: | 
					
						
						|  | hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0." | 
					
						
						|  | sd_downsample_prefix = f"down.{i}.downsample." | 
					
						
						|  | vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) | 
					
						
						|  |  | 
					
						
						|  | hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0." | 
					
						
						|  | sd_upsample_prefix = f"up.{3-i}.upsample." | 
					
						
						|  | vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for j in range(3): | 
					
						
						|  | hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}." | 
					
						
						|  | sd_up_prefix = f"decoder.up.{3-i}.block.{j}." | 
					
						
						|  | vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for i in range(2): | 
					
						
						|  | hf_mid_res_prefix = f"mid_block.resnets.{i}." | 
					
						
						|  | sd_mid_res_prefix = f"mid.block_{i+1}." | 
					
						
						|  | vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | vae_conversion_map_attn = [ | 
					
						
						|  |  | 
					
						
						|  | ("norm.", "group_norm."), | 
					
						
						|  | ("q.", "query."), | 
					
						
						|  | ("k.", "key."), | 
					
						
						|  | ("v.", "value."), | 
					
						
						|  | ("proj_out.", "proj_attn."), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def reshape_weight_for_sd(w): | 
					
						
						|  |  | 
					
						
						|  | return w.reshape(*w.shape, 1, 1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def convert_vae_state_dict(vae_state_dict): | 
					
						
						|  | mapping = {k: k for k in vae_state_dict.keys()} | 
					
						
						|  | for k, v in mapping.items(): | 
					
						
						|  | for sd_part, hf_part in vae_conversion_map: | 
					
						
						|  | v = v.replace(hf_part, sd_part) | 
					
						
						|  | mapping[k] = v | 
					
						
						|  | for k, v in mapping.items(): | 
					
						
						|  | if "attentions" in k: | 
					
						
						|  | for sd_part, hf_part in vae_conversion_map_attn: | 
					
						
						|  | v = v.replace(hf_part, sd_part) | 
					
						
						|  | mapping[k] = v | 
					
						
						|  | new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()} | 
					
						
						|  | weights_to_convert = ["q", "k", "v", "proj_out"] | 
					
						
						|  | print("[1;32mConverting to CKPT ...") | 
					
						
						|  | for k, v in new_state_dict.items(): | 
					
						
						|  | for weight_name in weights_to_convert: | 
					
						
						|  | if f"mid.attn_1.{weight_name}.weight" in k: | 
					
						
						|  | new_state_dict[k] = reshape_weight_for_sd(v) | 
					
						
						|  | return new_state_dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def convert_text_enc_state_dict(text_enc_dict): | 
					
						
						|  | return text_enc_dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def convert(model_path, checkpoint_path): | 
					
						
						|  | unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.bin") | 
					
						
						|  | vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.bin") | 
					
						
						|  | text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | unet_state_dict = torch.load(unet_path, map_location='cpu') | 
					
						
						|  | unet_state_dict = convert_unet_state_dict(unet_state_dict) | 
					
						
						|  | unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | vae_state_dict = torch.load(vae_path, map_location='cpu') | 
					
						
						|  | vae_state_dict = convert_vae_state_dict(vae_state_dict) | 
					
						
						|  | vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | text_enc_dict = torch.load(text_enc_path, map_location='cpu') | 
					
						
						|  | text_enc_dict = convert_text_enc_state_dict(text_enc_dict) | 
					
						
						|  | text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict} | 
					
						
						|  |  | 
					
						
						|  | state_dict = {k:v.half() for k,v in state_dict.items()} | 
					
						
						|  | state_dict = {"state_dict": state_dict} | 
					
						
						|  | torch.save(state_dict, checkpoint_path) | 
					
						
						|  |  |