# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Main training loop.""" import os import time import copy import json import pickle import psutil import PIL.Image import numpy as np import torch import dnnlib from torch_utils import misc from torch_utils import training_stats from torch_utils.ops import conv2d_gradfix from torch_utils.ops import grid_sample_gradfix import legacy from metrics import metric_main def cosine_decay_with_warmup(cur_nimg, base_value, total_nimg, final_value=0.0, warmup_value=0.0, warmup_nimg=0, hold_base_value_nimg=0): decay = 0.5 * (1 + np.cos(np.pi * (cur_nimg - warmup_nimg - hold_base_value_nimg) / float(total_nimg - warmup_nimg - hold_base_value_nimg))) cur_value = base_value + (1 - decay) * (final_value - base_value) if hold_base_value_nimg > 0: cur_value = np.where(cur_nimg > warmup_nimg + hold_base_value_nimg, cur_value, base_value) if warmup_nimg > 0: slope = (base_value - warmup_value) / warmup_nimg warmup_v = slope * cur_nimg + warmup_value cur_value = np.where(cur_nimg < warmup_nimg, warmup_v, cur_value) return float(np.where(cur_nimg > total_nimg, final_value, cur_value)) #---------------------------------------------------------------------------- def setup_snapshot_image_grid(training_set, random_seed=0): rnd = np.random.RandomState(random_seed) gw = np.clip(7680 // training_set.image_shape[2], 7, 32) gh = np.clip(4320 // training_set.image_shape[1], 4, 32) # No labels => show random subset of training samples. if not training_set.has_labels: all_indices = list(range(len(training_set))) rnd.shuffle(all_indices) grid_indices = [all_indices[i % len(all_indices)] for i in range(gw * gh)] else: # Group training samples by label. label_groups = dict() # label => [idx, ...] for idx in range(len(training_set)): label = tuple(training_set.get_details(idx).raw_label.flat[::-1]) if label not in label_groups: label_groups[label] = [] label_groups[label].append(idx) # Reorder. label_order = sorted(label_groups.keys()) for label in label_order: rnd.shuffle(label_groups[label]) # Organize into grid. grid_indices = [] for y in range(gh): label = label_order[y % len(label_order)] indices = label_groups[label] grid_indices += [indices[x % len(indices)] for x in range(gw)] label_groups[label] = [indices[(i + gw) % len(indices)] for i in range(len(indices))] # Load data. images, labels = zip(*[training_set[i] for i in grid_indices]) return (gw, gh), np.stack(images), np.stack(labels) #---------------------------------------------------------------------------- def save_image_grid(img, fname, drange, grid_size): lo, hi = drange img = np.asarray(img, dtype=np.float32) img = (img - lo) * (255 / (hi - lo)) img = np.rint(img).clip(0, 255).astype(np.uint8) gw, gh = grid_size _N, C, H, W = img.shape img = img.reshape([gh, gw, C, H, W]) img = img.transpose(0, 3, 1, 4, 2) img = img.reshape([gh * H, gw * W, C]) assert C in [1, 3] if C == 1: PIL.Image.fromarray(img[:, :, 0], 'L').save(fname) if C == 3: PIL.Image.fromarray(img, 'RGB').save(fname) #---------------------------------------------------------------------------- def remap_optimizer_state_dict(state_dict, device): state_dict = copy.deepcopy(state_dict) for param in state_dict['state'].values(): if isinstance(param, torch.Tensor): param.data = param.data.to(device) if param._grad is not None: param._grad.data = param._grad.data.to(device) elif isinstance(param, dict): for subparam in param.values(): if isinstance(subparam, torch.Tensor): subparam.data = subparam.data.to(device) if subparam._grad is not None: subparam._grad.data = subparam._grad.data.to(device) return state_dict #---------------------------------------------------------------------------- def training_loop( run_dir = '.', # Output directory. training_set_kwargs = {}, # Options for training set. data_loader_kwargs = {}, # Options for torch.utils.data.DataLoader. G_kwargs = {}, # Options for generator network. D_kwargs = {}, # Options for discriminator network. G_opt_kwargs = {}, # Options for generator optimizer. D_opt_kwargs = {}, # Options for discriminator optimizer. lr_scheduler = None, beta2_scheduler = None, augment_kwargs = None, # Options for augmentation pipeline. None = disable. loss_kwargs = {}, # Options for loss function. gamma_scheduler = None, metrics = [], # Metrics to evaluate during training. random_seed = 0, # Global random seed. num_gpus = 1, # Number of GPUs participating in the training. rank = 0, # Rank of the current process in [0, num_gpus[. batch_size = 4, # Total batch size for one training iteration. Can be larger than batch_gpu * num_gpus. g_batch_gpu = 4, # Number of samples processed at a time by one GPU. d_batch_gpu = 4, # Number of samples processed at a time by one GPU. ema_scheduler = None, aug_scheduler = None, total_kimg = 25000, # Total length of the training, measured in thousands of real images. kimg_per_tick = 4, # Progress snapshot interval. image_snapshot_ticks = 50, # How often to save image snapshots? None = disable. network_snapshot_ticks = 50, # How often to save network snapshots? None = disable. resume_pkl = None, # Network pickle to resume training from. cudnn_benchmark = True, # Enable torch.backends.cudnn.benchmark? abort_fn = None, # Callback function for determining whether to abort training. Must return consistent results across ranks. progress_fn = None, # Callback function for updating training progress. Called for all ranks. ): # Initialize. start_time = time.time() device = torch.device('cuda', rank) np.random.seed(random_seed * num_gpus + rank) torch.manual_seed(random_seed * num_gpus + rank) torch.backends.cudnn.benchmark = cudnn_benchmark # Improves training speed. torch.backends.cuda.matmul.allow_tf32 = False # Improves numerical accuracy. torch.backends.cudnn.allow_tf32 = False # Improves numerical accuracy. conv2d_gradfix.enabled = True # Improves training speed. grid_sample_gradfix.enabled = True # Avoids errors with the augmentation pipe. # Load training set. if rank == 0: print('Loading training set...') training_set = dnnlib.util.construct_class_by_name(**training_set_kwargs) # subclass of training.dataset.Dataset training_set_sampler = misc.InfiniteSampler(dataset=training_set, rank=rank, num_replicas=num_gpus, seed=random_seed) training_set_iterator = iter(torch.utils.data.DataLoader(dataset=training_set, sampler=training_set_sampler, batch_size=batch_size//num_gpus, **data_loader_kwargs)) if rank == 0: print() print('Num images: ', len(training_set)) print('Image shape:', training_set.image_shape) print('Label shape:', training_set.label_shape) print() # Construct networks. if rank == 0: print('Constructing networks...') common_kwargs = dict(c_dim=training_set.label_dim, img_resolution=training_set.resolution) G = dnnlib.util.construct_class_by_name(**G_kwargs, **common_kwargs).train().requires_grad_(False).to(device) # subclass of torch.nn.Module D = dnnlib.util.construct_class_by_name(**D_kwargs, **common_kwargs).train().requires_grad_(False).to(device) # subclass of torch.nn.Module G_ema = copy.deepcopy(G).eval() # Resume from existing pickle. if resume_pkl is not None: with dnnlib.util.open_url(resume_pkl) as f: resume_data = legacy.load_network_pkl(f) if rank == 0: print(f'Resuming from "{resume_pkl}"') for name, module in [('G', G), ('D', D), ('G_ema', G_ema)]: misc.copy_params_and_buffers(resume_data[name], module, require_all=False) # Print network summary tables. if rank == 0: z = torch.empty([min(g_batch_gpu, d_batch_gpu), G.z_dim], device=device) c = torch.empty([min(g_batch_gpu, d_batch_gpu), G.c_dim], device=device) img = misc.print_module_summary(G, [z, c]) misc.print_module_summary(D, [img, c]) # Setup augmentation. if rank == 0: print('Setting up augmentation...') augment_pipe = None if (augment_kwargs is not None) and (aug_scheduler is not None): augment_pipe = dnnlib.util.construct_class_by_name(**augment_kwargs).train().requires_grad_(False).to(device) # subclass of torch.nn.Module # Distribute across GPUs. if rank == 0: print(f'Distributing across {num_gpus} GPUs...') for module in [G, D, G_ema]: if module is not None and num_gpus > 1: for param in misc.params_and_buffers(module): torch.distributed.broadcast(param, src=0) # Setup training phases. if rank == 0: print('Setting up training phases...') loss = dnnlib.util.construct_class_by_name(G=G, D=D, augment_pipe=augment_pipe, **loss_kwargs) # subclass of training.loss.Loss phases = [] opt = dnnlib.util.construct_class_by_name(params=D.parameters(), **D_opt_kwargs) if resume_pkl is not None: opt.load_state_dict(remap_optimizer_state_dict(resume_data['D_opt_state'], device)) phases += [dnnlib.EasyDict(name='D', module=D, opt=opt, batch_gpu=d_batch_gpu)] opt = dnnlib.util.construct_class_by_name(params=G.parameters(), **G_opt_kwargs) if resume_pkl is not None: opt.load_state_dict(remap_optimizer_state_dict(resume_data['G_opt_state'], device)) phases += [dnnlib.EasyDict(name='G', module=G, opt=opt, batch_gpu=g_batch_gpu)] for phase in phases: phase.start_event = None phase.end_event = None if rank == 0: phase.start_event = torch.cuda.Event(enable_timing=True) phase.end_event = torch.cuda.Event(enable_timing=True) # Export sample images. grid_size = None grid_z = None grid_c = None if rank == 0: print('Exporting sample images...') grid_size, images, labels = setup_snapshot_image_grid(training_set=training_set) save_image_grid(images, os.path.join(run_dir, 'reals.png'), drange=[0,255], grid_size=grid_size) grid_z = torch.randn([labels.shape[0], G.z_dim], device=device).split(g_batch_gpu) grid_c = torch.from_numpy(labels).to(device).split(g_batch_gpu) images = torch.cat([G_ema(z, c).cpu() for z, c in zip(grid_z, grid_c)]).to(torch.float).numpy() save_image_grid(images, os.path.join(run_dir, 'fakes_init.png'), drange=[-1,1], grid_size=grid_size) # Initialize logs. if rank == 0: print('Initializing logs...') stats_collector = training_stats.Collector(regex='.*') stats_metrics = dict() stats_jsonl = None stats_tfevents = None if rank == 0: stats_jsonl = open(os.path.join(run_dir, 'stats.jsonl'), 'wt') try: import torch.utils.tensorboard as tensorboard stats_tfevents = tensorboard.SummaryWriter(run_dir) except ImportError as err: print('Skipping tfevents export:', err) # Train. if rank == 0: print(f'Training for {total_kimg} kimg...') print() cur_nimg = resume_data['cur_nimg'] if resume_pkl is not None else 0 cur_tick = 0 tick_start_nimg = cur_nimg tick_start_time = time.time() maintenance_time = tick_start_time - start_time batch_idx = 0 if progress_fn is not None: progress_fn(0, total_kimg) # Dummy Timing, required to fix phase shift for phase in phases: if phase.start_event is not None: phase.start_event.record(torch.cuda.current_stream(device)) if phase.end_event is not None: phase.end_event.record(torch.cuda.current_stream(device)) while True: # Fetch training data. with torch.autograd.profiler.record_function('data_fetch'): D_img, D_img_c = next(training_set_iterator) D_z = torch.randn([batch_size, G.z_dim], device=device) G_img, G_img_c = next(training_set_iterator) G_z = torch.randn([batch_size, G.z_dim], device=device) all_real_img = [] all_real_c = [] all_gen_z = [] # D all_real_img += [(D_img.detach().clone().to(device).to(torch.float32) / 127.5 - 1).split(d_batch_gpu)] all_real_c += [D_img_c.detach().clone().to(device).split(d_batch_gpu)] all_gen_z += [D_z.detach().clone().split(d_batch_gpu)] # G all_real_img += [(G_img.detach().clone().to(device).to(torch.float32) / 127.5 - 1).split(g_batch_gpu)] all_real_c += [G_img_c.detach().clone().to(device).split(g_batch_gpu)] all_gen_z += [G_z.detach().clone().split(g_batch_gpu)] cur_lr = cosine_decay_with_warmup(cur_nimg, **lr_scheduler) cur_beta2 = cosine_decay_with_warmup(cur_nimg, **beta2_scheduler) cur_gamma = cosine_decay_with_warmup(cur_nimg, **gamma_scheduler) cur_ema_nimg = cosine_decay_with_warmup(cur_nimg, **ema_scheduler) cur_aug_p = cosine_decay_with_warmup(cur_nimg, **aug_scheduler) if augment_pipe is not None: augment_pipe.p.copy_(misc.constant(cur_aug_p, device=device)) # Execute training phases. for phase, phase_gen_z, phase_real_img, phase_real_c in zip(phases, all_gen_z, all_real_img, all_real_c): if phase.start_event is not None: phase.start_event.record(torch.cuda.current_stream(device)) # Accumulate gradients. phase.opt.zero_grad(set_to_none=True) phase.module.requires_grad_(True) for real_img, real_c, gen_z in zip(phase_real_img, phase_real_c, phase_gen_z): loss.accumulate_gradients(phase=phase.name, real_img=real_img, real_c=real_c, gen_z=gen_z, gamma=cur_gamma, gain=num_gpus * phase.batch_gpu / batch_size) phase.module.requires_grad_(False) # Update weights. for g in phase.opt.param_groups: g['lr'] = cur_lr g['betas'] = (0, cur_beta2) with torch.autograd.profiler.record_function(phase.name + '_opt'): params = [param for param in phase.module.parameters() if param.grad is not None] if len(params) > 0: flat = torch.cat([param.grad.flatten() for param in params]) if num_gpus > 1: torch.distributed.all_reduce(flat) flat /= num_gpus grads = flat.split([param.numel() for param in params]) for param, grad in zip(params, grads): param.grad = grad.reshape(param.shape) phase.opt.step() # Phase done. if phase.end_event is not None: phase.end_event.record(torch.cuda.current_stream(device)) # Update G_ema. with torch.autograd.profiler.record_function('Gema'): ema_beta = 0.5 ** (batch_size / max(cur_ema_nimg, 1e-8)) for p_ema, p in zip(G_ema.parameters(), G.parameters()): p_ema.copy_(p.lerp(p_ema, ema_beta)) for b_ema, b in zip(G_ema.buffers(), G.buffers()): b_ema.copy_(b) # Update state. cur_nimg += batch_size batch_idx += 1 # Perform maintenance tasks once per tick. done = (cur_nimg >= total_kimg * 1000) if (not done) and (cur_tick != 0) and (cur_nimg < tick_start_nimg + kimg_per_tick * 1000): continue # Print status line, accumulating the same information in training_stats. tick_end_time = time.time() fields = [] fields += [f"tick {training_stats.report0('Progress/tick', cur_tick):<5d}"] fields += [f"kimg {training_stats.report0('Progress/kimg', cur_nimg / 1e3):<8.1f}"] fields += [f"time {dnnlib.util.format_time(training_stats.report0('Timing/total_sec', tick_end_time - start_time)):<12s}"] fields += [f"sec/tick {training_stats.report0('Timing/sec_per_tick', tick_end_time - tick_start_time):<7.1f}"] fields += [f"sec/kimg {training_stats.report0('Timing/sec_per_kimg', (tick_end_time - tick_start_time) / (cur_nimg - tick_start_nimg) * 1e3):<7.2f}"] fields += [f"maintenance {training_stats.report0('Timing/maintenance_sec', maintenance_time):<6.1f}"] fields += [f"cpumem {training_stats.report0('Resources/cpu_mem_gb', psutil.Process(os.getpid()).memory_info().rss / 2**30):<6.2f}"] fields += [f"gpumem {training_stats.report0('Resources/peak_gpu_mem_gb', torch.cuda.max_memory_allocated(device) / 2**30):<6.2f}"] fields += [f"reserved {training_stats.report0('Resources/peak_gpu_mem_reserved_gb', torch.cuda.max_memory_reserved(device) / 2**30):<6.2f}"] torch.cuda.reset_peak_memory_stats() fields += [f"augment {training_stats.report0('Progress/augment', float(augment_pipe.p.cpu()) if augment_pipe is not None else 0):.3f}"] training_stats.report0('Progress/lr', cur_lr) training_stats.report0('Progress/ema_mimg', cur_ema_nimg / 1e6) training_stats.report0('Progress/beta2', cur_beta2) training_stats.report0('Progress/gamma', cur_gamma) training_stats.report0('Timing/total_hours', (tick_end_time - start_time) / (60 * 60)) training_stats.report0('Timing/total_days', (tick_end_time - start_time) / (24 * 60 * 60)) if rank == 0: print(' '.join(fields)) # Check for abort. if (not done) and (abort_fn is not None) and abort_fn(): done = True if rank == 0: print() print('Aborting...') # Save image snapshot. if (rank == 0) and (image_snapshot_ticks is not None) and (done or cur_tick % image_snapshot_ticks == 0): images = torch.cat([G_ema(z, c).cpu() for z, c in zip(grid_z, grid_c)]).to(torch.float).numpy() save_image_grid(images, os.path.join(run_dir, f'fakes{cur_nimg//1000:09d}.png'), drange=[-1,1], grid_size=grid_size) # Save network snapshot. snapshot_pkl = None snapshot_data = None if (network_snapshot_ticks is not None) and (done or cur_tick % network_snapshot_ticks == 0): snapshot_data = dict(G=G, D=D, G_ema=G_ema, training_set_kwargs=dict(training_set_kwargs), cur_nimg=cur_nimg) for phase in phases: snapshot_data[phase.name + '_opt_state'] = remap_optimizer_state_dict(phase.opt.state_dict(), 'cpu') for key, value in snapshot_data.items(): if isinstance(value, torch.nn.Module): value = copy.deepcopy(value).eval().requires_grad_(False) if num_gpus > 1: misc.check_ddp_consistency(value, ignore_regex=r'.*\.[^.]+_(avg|ema)') for param in misc.params_and_buffers(value): torch.distributed.broadcast(param, src=0) snapshot_data[key] = value.cpu() del value # conserve memory snapshot_pkl = os.path.join(run_dir, f'network-snapshot-{cur_nimg//1000:09d}.pkl') if rank == 0: with open(snapshot_pkl, 'wb') as f: pickle.dump(snapshot_data, f) # Evaluate metrics. if (snapshot_data is not None) and (len(metrics) > 0): if rank == 0: print('Evaluating metrics...') for metric in metrics: result_dict = metric_main.calc_metric(metric=metric, G=snapshot_data['G_ema'], dataset_kwargs=training_set_kwargs, num_gpus=num_gpus, rank=rank, device=device) if rank == 0: metric_main.report_metric(result_dict, run_dir=run_dir, snapshot_pkl=snapshot_pkl) stats_metrics.update(result_dict.results) del snapshot_data # conserve memory # Collect statistics. for phase in phases: value = [] if (phase.start_event is not None) and (phase.end_event is not None): phase.end_event.synchronize() value = phase.start_event.elapsed_time(phase.end_event) training_stats.report0('Timing/' + phase.name, value) stats_collector.update() stats_dict = stats_collector.as_dict() # Update logs. timestamp = time.time() if stats_jsonl is not None: fields = dict(stats_dict, timestamp=timestamp) stats_jsonl.write(json.dumps(fields) + '\n') stats_jsonl.flush() if stats_tfevents is not None: global_step = int(cur_nimg / 1e3) walltime = timestamp - start_time for name, value in stats_dict.items(): stats_tfevents.add_scalar(name, value.mean, global_step=global_step, walltime=walltime) for name, value in stats_metrics.items(): stats_tfevents.add_scalar(f'Metrics/{name}', value, global_step=global_step, walltime=walltime) stats_tfevents.flush() if progress_fn is not None: progress_fn(cur_nimg // 1000, total_kimg) # Update state. cur_tick += 1 tick_start_nimg = cur_nimg tick_start_time = time.time() maintenance_time = tick_start_time - tick_end_time if done: break # Done. if rank == 0: print() print('Exiting...') #----------------------------------------------------------------------------