Spaces:
Sleeping
Sleeping
File size: 39,474 Bytes
24f0aa3 250e8f9 24f0aa3 3136eb2 184cf5f 24f0aa3 184cf5f 24f0aa3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 |
import os
import numpy as np
import torch
import PIL.Image
import gradio as gr
import dnnlib
import legacy
from huggingface_hub import hf_hub_download
# ImageNet class names (1000 classes)
imagenet_classes = {
0: "tench, Tinca tinca",
1: "goldfish, Carassius auratus",
2: "great white shark, white shark, man-eater, man-eating shark, Carcharodon caharias',",
3: "tiger shark, Galeocerdo cuvieri",
4: "hammerhead, hammerhead shark",
5: "electric ray, crampfish, numbfish, torpedo",
6: "stingray",
7: "cock",
8: "hen",
9: "ostrich, Struthio camelus",
10: "brambling, Fringilla montifringilla",
11: "goldfinch, Carduelis carduelis",
12: "house finch, linnet, Carpodacus mexicanus",
13: "junco, snowbird",
14: "indigo bunting, indigo finch, indigo bird, Passerina cyanea",
15: "robin, American robin, Turdus migratorius",
16: "bulbul",
17: "jay",
18: "magpie",
19: "chickadee",
20: "water ouzel, dipper",
21: "kite",
22: "bald eagle, American eagle, Haliaeetus leucocephalus",
23: "vulture",
24: "great grey owl, great gray owl, Strix nebulosa",
25: "European fire salamander, Salamandra salamandra",
26: "common newt, Triturus vulgaris",
27: "eft",
28: "spotted salamander, Ambystoma maculatum",
29: "axolotl, mud puppy, Ambystoma mexicanum",
30: "bullfrog, Rana catesbeiana",
31: "tree frog, tree-frog",
32: "tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui",
33: "loggerhead, loggerhead turtle, Caretta caretta",
34: "leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea",
35: "mud turtle",
36: "terrapin",
37: "box turtle, box tortoise",
38: "banded gecko",
39: "common iguana, iguana, Iguana iguana",
40: "American chameleon, anole, Anolis carolinensis",
41: "whiptail, whiptail lizard",
42: "agama",
43: "frilled lizard, Chlamydosaurus kingi",
44: "alligator lizard",
45: "Gila monster, Heloderma suspectum",
46: "green lizard, Lacerta viridis",
47: "African chameleon, Chamaeleo chamaeleon",
48: "Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoeis',",
49: "African crocodile, Nile crocodile, Crocodylus niloticus",
50: "American alligator, Alligator mississipiensis",
51: "triceratops",
52: "thunder snake, worm snake, Carphophis amoenus",
53: "ringneck snake, ring-necked snake, ring snake",
54: "hognose snake, puff adder, sand viper",
55: "green snake, grass snake",
56: "king snake, kingsnake",
57: "garter snake, grass snake",
58: "water snake",
59: "vine snake",
60: "night snake, Hypsiglena torquata",
61: "boa constrictor, Constrictor constrictor",
62: "rock python, rock snake, Python sebae",
63: "Indian cobra, Naja naja",
64: "green mamba",
65: "sea snake",
66: "horned viper, cerastes, sand viper, horned asp, Cerastes cornutus",
67: "diamondback, diamondback rattlesnake, Crotalus adamanteus",
68: "sidewinder, horned rattlesnake, Crotalus cerastes",
69: "trilobite",
70: "harvestman, daddy longlegs, Phalangium opilio",
71: "scorpion",
72: "black and gold garden spider, Argiope aurantia",
73: "barn spider, Araneus cavaticus",
74: "garden spider, Aranea diademata",
75: "black widow, Latrodectus mactans",
76: "tarantula",
77: "wolf spider, hunting spider",
78: "tick",
79: "centipede",
80: "black grouse",
81: "ptarmigan",
82: "ruffed grouse, partridge, Bonasa umbellus",
83: "prairie chicken, prairie grouse, prairie fowl",
84: "peacock",
85: "quail",
86: "partridge",
87: "African grey, African gray, Psittacus erithacus",
88: "macaw",
89: "sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita",
90: "lorikeet",
91: "coucal",
92: "bee eater",
93: "hornbill",
94: "hummingbird",
95: "jacamar",
96: "toucan",
97: "drake",
98: "red-breasted merganser, Mergus serrator",
99: "goose",
100: "black swan, Cygnus atratus",
101: "tusker",
102: "echidna, spiny anteater, anteater",
103: "platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhyhus anatinus',",
104: "wallaby, brush kangaroo",
105: "koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus",
106: "wombat",
107: "jellyfish",
108: "sea anemone, anemone",
109: "brain coral",
110: "flatworm, platyhelminth",
111: "nematode, nematode worm, roundworm",
112: "conch",
113: "snail",
114: "slug",
115: "sea slug, nudibranch",
116: "chiton, coat-of-mail shell, sea cradle, polyplacophore",
117: "chambered nautilus, pearly nautilus, nautilus",
118: "Dungeness crab, Cancer magister",
119: "rock crab, Cancer irroratus",
120: "fiddler crab",
121: "king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodesamtschatica',",
122: "American lobster, Northern lobster, Maine lobster, Homarus americanus",
123: "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish",
124: "crayfish, crawfish, crawdad, crawdaddy",
125: "hermit crab",
126: "isopod",
127: "white stork, Ciconia ciconia",
128: "black stork, Ciconia nigra",
129: "spoonbill",
130: "flamingo",
131: "little blue heron, Egretta caerulea",
132: "American egret, great white heron, Egretta albus",
133: "bittern",
134: "crane, bird",
135: "limpkin, Aramus pictus",
136: "European gallinule, Porphyrio porphyrio",
137: "American coot, marsh hen, mud hen, water hen, Fulica americana",
138: "bustard",
139: "ruddy turnstone, Arenaria interpres",
140: "red-backed sandpiper, dunlin, Erolia alpina",
141: "redshank, Tringa totanus",
142: "dowitcher",
143: "oystercatcher, oyster catcher",
144: "pelican",
145: "king penguin, Aptenodytes patagonica",
146: "albatross, mollymawk",
147: "grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius rostus',",
148: "killer whale, killer, orca, grampus, sea wolf, Orcinus orca",
149: "dugong, Dugong dugon",
150: "sea lion",
151: "Chihuahua",
152: "Japanese spaniel",
153: "Maltese dog, Maltese terrier, Maltese",
154: "Pekinese, Pekingese, Peke",
155: "Shih-Tzu",
156: "Blenheim spaniel",
157: "papillon",
158: "toy terrier",
159: "Rhodesian ridgeback",
160: "Afghan hound, Afghan",
161: "basset, basset hound",
162: "beagle",
163: "bloodhound, sleuthhound",
164: "bluetick",
165: "black-and-tan coonhound",
166: "Walker hound, Walker foxhound",
167: "English foxhound",
168: "redbone",
169: "borzoi, Russian wolfhound",
170: "Irish wolfhound",
171: "Italian greyhound",
172: "whippet",
173: "Ibizan hound, Ibizan Podenco",
174: "Norwegian elkhound, elkhound",
175: "otterhound, otter hound",
176: "Saluki, gazelle hound",
177: "Scottish deerhound, deerhound",
178: "Weimaraner",
179: "Staffordshire bullterrier, Staffordshire bull terrier",
180: "American Staffordshire terrier, Staffordshire terrier, American pit bull rrier, pit bull terrier',",
181: "Bedlington terrier",
182: "Border terrier",
183: "Kerry blue terrier",
184: "Irish terrier",
185: "Norfolk terrier",
186: "Norwich terrier",
187: "Yorkshire terrier",
188: "wire-haired fox terrier",
189: "Lakeland terrier",
190: "Sealyham terrier, Sealyham",
191: "Airedale, Airedale terrier",
192: "cairn, cairn terrier",
193: "Australian terrier",
194: "Dandie Dinmont, Dandie Dinmont terrier",
195: "Boston bull, Boston terrier",
196: "miniature schnauzer",
197: "giant schnauzer",
198: "standard schnauzer",
199: "Scotch terrier, Scottish terrier, Scottie",
200: "Tibetan terrier, chrysanthemum dog",
201: "silky terrier, Sydney silky",
202: "soft-coated wheaten terrier",
203: "West Highland white terrier",
204: "Lhasa, Lhasa apso",
205: "flat-coated retriever",
206: "curly-coated retriever",
207: "golden retriever",
208: "Labrador retriever",
209: "Chesapeake Bay retriever",
210: "German short-haired pointer",
211: "vizsla, Hungarian pointer",
212: "English setter",
213: "Irish setter, red setter",
214: "Gordon setter",
215: "Brittany spaniel",
216: "clumber, clumber spaniel",
217: "English springer, English springer spaniel",
218: "Welsh springer spaniel",
219: "cocker spaniel, English cocker spaniel, cocker",
220: "Sussex spaniel",
221: "Irish water spaniel",
222: "kuvasz",
223: "schipperke",
224: "groenendael",
225: "malinois",
226: "briard",
227: "kelpie",
228: "komondor",
229: "Old English sheepdog, bobtail",
230: "Shetland sheepdog, Shetland sheep dog, Shetland",
231: "collie",
232: "Border collie",
233: "Bouvier des Flandres, Bouviers des Flandres",
234: "Rottweiler",
235: "German shepherd, German shepherd dog, German police dog, alsatian",
236: "Doberman, Doberman pinscher",
237: "miniature pinscher",
238: "Greater Swiss Mountain dog",
239: "Bernese mountain dog",
240: "Appenzeller",
241: "EntleBucher",
242: "boxer",
243: "bull mastiff",
244: "Tibetan mastiff",
245: "French bulldog",
246: "Great Dane",
247: "Saint Bernard, St Bernard",
248: "Eskimo dog, husky",
249: "malamute, malemute, Alaskan malamute",
250: "Siberian husky",
251: "dalmatian, coach dog, carriage dog",
252: "affenpinscher, monkey pinscher, monkey dog",
253: "basenji",
254: "pug, pug-dog",
255: "Leonberg",
256: "Newfoundland, Newfoundland dog",
257: "Great Pyrenees",
258: "Samoyed, Samoyede",
259: "Pomeranian",
260: "chow, chow chow",
261: "keeshond",
262: "Brabancon griffon",
263: "Pembroke, Pembroke Welsh corgi",
264: "Cardigan, Cardigan Welsh corgi",
265: "toy poodle",
266: "miniature poodle",
267: "standard poodle",
268: "Mexican hairless",
269: "timber wolf, grey wolf, gray wolf, Canis lupus",
270: "white wolf, Arctic wolf, Canis lupus tundrarum",
271: "red wolf, maned wolf, Canis rufus, Canis niger",
272: "coyote, prairie wolf, brush wolf, Canis latrans",
273: "dingo, warrigal, warragal, Canis dingo",
274: "dhole, Cuon alpinus",
275: "African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus",
276: "hyena, hyaena",
277: "red fox, Vulpes vulpes",
278: "kit fox, Vulpes macrotis",
279: "Arctic fox, white fox, Alopex lagopus",
280: "grey fox, gray fox, Urocyon cinereoargenteus",
281: "tabby, tabby cat",
282: "tiger cat",
283: "Persian cat",
284: "Siamese cat, Siamese",
285: "Egyptian cat",
286: "cougar, puma, catamount, mountain lion, painter, panther, Felis concolor",
287: "lynx, catamount",
288: "leopard, Panthera pardus",
289: "snow leopard, ounce, Panthera uncia",
290: "jaguar, panther, Panthera onca, Felis onca",
291: "lion, king of beasts, Panthera leo",
292: "tiger, Panthera tigris",
293: "cheetah, chetah, Acinonyx jubatus",
294: "brown bear, bruin, Ursus arctos",
295: "American black bear, black bear, Ursus americanus, Euarctos americanus",
296: "ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus",
297: "sloth bear, Melursus ursinus, Ursus ursinus",
298: "mongoose",
299: "meerkat, mierkat",
300: "tiger beetle",
301: "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle",
302: "ground beetle, carabid beetle",
303: "long-horned beetle, longicorn, longicorn beetle",
304: "leaf beetle, chrysomelid",
305: "dung beetle",
306: "rhinoceros beetle",
307: "weevil",
308: "fly",
309: "bee",
310: "ant, emmet, pismire",
311: "grasshopper, hopper",
312: "cricket",
313: "walking stick, walkingstick, stick insect",
314: "cockroach, roach",
315: "mantis, mantid",
316: "cicada, cicala",
317: "leafhopper",
318: "lacewing, lacewing fly",
319: "dragonfly, darning needle, devil's darning needle, sewing needle, snake fder, snake doctor, mosquito hawk, skeeter hawk",
320: "damselfly",
321: "admiral",
322: "ringlet, ringlet butterfly",
323: "monarch, monarch butterfly, milkweed butterfly, Danaus plexippus",
324: "cabbage butterfly",
325: "sulphur butterfly, sulfur butterfly",
326: "lycaenid, lycaenid butterfly",
327: "starfish, sea star",
328: "sea urchin",
329: "sea cucumber, holothurian",
330: "wood rabbit, cottontail, cottontail rabbit",
331: "hare",
332: "Angora, Angora rabbit",
333: "hamster",
334: "porcupine, hedgehog",
335: "fox squirrel, eastern fox squirrel, Sciurus niger",
336: "marmot",
337: "beaver",
338: "guinea pig, Cavia cobaya",
339: "sorrel",
340: "zebra",
341: "hog, pig, grunter, squealer, Sus scrofa",
342: "wild boar, boar, Sus scrofa",
343: "warthog",
344: "hippopotamus, hippo, river horse, Hippopotamus amphibius",
345: "ox",
346: "water buffalo, water ox, Asiatic buffalo, Bubalus bubalis",
347: "bison",
348: "ram, tup",
349: "bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain eep, Ovis canadensis',",
350: "ibex, Capra ibex",
351: "hartebeest",
352: "impala, Aepyceros melampus",
353: "gazelle",
354: "Arabian camel, dromedary, Camelus dromedarius",
355: "llama",
356: "weasel",
357: "mink",
358: "polecat, fitch, foulmart, foumart, Mustela putorius",
359: "black-footed ferret, ferret, Mustela nigripes",
360: "otter",
361: "skunk, polecat, wood pussy",
362: "badger",
363: "armadillo",
364: "three-toed sloth, ai, Bradypus tridactylus",
365: "orangutan, orang, orangutang, Pongo pygmaeus",
366: "gorilla, Gorilla gorilla",
367: "chimpanzee, chimp, Pan troglodytes",
368: "gibbon, Hylobates lar",
369: "siamang, Hylobates syndactylus, Symphalangus syndactylus",
370: "guenon, guenon monkey",
371: "patas, hussar monkey, Erythrocebus patas",
372: "baboon",
373: "macaque",
374: "langur",
375: "colobus, colobus monkey",
376: "proboscis monkey, Nasalis larvatus",
377: "marmoset",
378: "capuchin, ringtail, Cebus capucinus",
379: "howler monkey, howler",
380: "titi, titi monkey",
381: "spider monkey, Ateles geoffroyi",
382: "squirrel monkey, Saimiri sciureus",
383: "Madagascar cat, ring-tailed lemur, Lemur catta",
384: "indri, indris, Indri indri, Indri brevicaudatus",
385: "Indian elephant, Elephas maximus",
386: "African elephant, Loxodonta africana",
387: "lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens",
388: "giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca",
389: "barracouta, snoek",
390: "eel",
391: "coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch",
392: "rock beauty, Holocanthus tricolor",
393: "anemone fish",
394: "sturgeon",
395: "gar, garfish, garpike, billfish, Lepisosteus osseus",
396: "lionfish",
397: "puffer, pufferfish, blowfish, globefish",
398: "abacus",
399: "abaya",
400: "academic gown, academic robe, judge's robe",
401: "accordion, piano accordion, squeeze box",
402: "acoustic guitar",
403: "aircraft carrier, carrier, flattop, attack aircraft carrier",
404: "airliner",
405: "airship, dirigible",
406: "altar",
407: "ambulance",
408: "amphibian, amphibious vehicle",
409: "analog clock",
410: "apiary, bee house",
411: "apron",
412: "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustb, trash barrel, trash bin',",
413: "assault rifle, assault gun",
414: "backpack, back pack, knapsack, packsack, rucksack, haversack",
415: "bakery, bakeshop, bakehouse",
416: "balance beam, beam",
417: "balloon",
418: "ballpoint, ballpoint pen, ballpen, Biro",
419: "Band Aid",
420: "banjo",
421: "bannister, banister, balustrade, balusters, handrail",
422: "barbell",
423: "barber chair",
424: "barbershop",
425: "barn",
426: "barometer",
427: "barrel, cask",
428: "barrow, garden cart, lawn cart, wheelbarrow",
429: "baseball",
430: "basketball",
431: "bassinet",
432: "bassoon",
433: "bathing cap, swimming cap",
434: "bath towel",
435: "bathtub, bathing tub, bath, tub",
436: "beach wagon, station wagon, wagon, estate car, beach waggon, station wagg, waggon',",
437: "beacon, lighthouse, beacon light, pharos",
438: "beaker",
439: "bearskin, busby, shako",
440: "beer bottle",
441: "beer glass",
442: "bell cote, bell cot",
443: "bib",
444: "bicycle-built-for-two, tandem bicycle, tandem",
445: "bikini, two-piece",
446: "binder, ring-binder",
447: "binoculars, field glasses, opera glasses",
448: "birdhouse",
449: "boathouse",
450: "bobsled, bobsleigh, bob",
451: "bolo tie, bolo, bola tie, bola",
452: "bonnet, poke bonnet",
453: "bookcase",
454: "bookshop, bookstore, bookstall",
455: "bottlecap",
456: "bow",
457: "bow tie, bow-tie, bowtie",
458: "brass, memorial tablet, plaque",
459: "brassiere, bra, bandeau",
460: "breakwater, groin, groyne, mole, bulwark, seawall, jetty",
461: "breastplate, aegis, egis",
462: "broom",
463: "bucket, pail",
464: "buckle",
465: "bulletproof vest",
466: "bullet train, bullet",
467: "butcher shop, meat market",
468: "cab, hack, taxi, taxicab",
469: "caldron, cauldron",
470: "candle, taper, wax light",
471: "cannon",
472: "canoe",
473: "can opener, tin opener",
474: "cardigan",
475: "car mirror",
476: "carousel, carrousel, merry-go-round, roundabout, whirligig",
477: "carpenter's kit, tool kit",
478: "carton",
479: "car wheel",
480: "cash machine, cash dispenser, automated teller machine, automatic teller chine, automated teller, automatic teller, ATM',",
481: "cassette",
482: "cassette player",
483: "castle",
484: "catamaran",
485: "CD player",
486: "cello, violoncello",
487: "cellular telephone, cellular phone, cellphone, cell, mobile phone",
488: "chain",
489: "chainlink fence",
490: "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring mour',",
491: "chain saw, chainsaw",
492: "chest",
493: "chiffonier, commode",
494: "chime, bell, gong",
495: "china cabinet, china closet",
496: "Christmas stocking",
497: "church, church building",
498: "cinema, movie theater, movie theatre, movie house, picture palace",
499: "cleaver, meat cleaver, chopper",
500: "cliff dwelling",
501: "cloak",
502: "clog, geta, patten, sabot",
503: "cocktail shaker",
504: "coffee mug",
505: "coffeepot",
506: "coil, spiral, volute, whorl, helix",
507: "combination lock",
508: "computer keyboard, keypad",
509: "confectionery, confectionary, candy store",
510: "container ship, containership, container vessel",
511: "convertible",
512: "corkscrew, bottle screw",
513: "cornet, horn, trumpet, trump",
514: "cowboy boot",
515: "cowboy hat, ten-gallon hat",
516: "cradle",
517: "crane",
518: "crash helmet",
519: "crate",
520: "crib, cot",
521: "Crock Pot",
522: "croquet ball",
523: "crutch",
524: "cuirass",
525: "dam, dike, dyke",
526: "desk",
527: "desktop computer",
528: "dial telephone, dial phone",
529: "diaper, nappy, napkin",
530: "digital clock",
531: "digital watch",
532: "dining table, board",
533: "dishrag, dishcloth",
534: "dishwasher, dish washer, dishwashing machine",
535: "disk brake, disc brake",
536: "dock, dockage, docking facility",
537: "dogsled, dog sled, dog sleigh",
538: "dome",
539: "doormat, welcome mat",
540: "drilling platform, offshore rig",
541: "drum, membranophone, tympan",
542: "drumstick",
543: "dumbbell",
544: "Dutch oven",
545: "electric fan, blower",
546: "electric guitar",
547: "electric locomotive",
548: "entertainment center",
549: "envelope",
550: "espresso maker",
551: "face powder",
552: "feather boa, boa",
553: "file, file cabinet, filing cabinet",
554: "fireboat",
555: "fire engine, fire truck",
556: "fire screen, fireguard",
557: "flagpole, flagstaff",
558: "flute, transverse flute",
559: "folding chair",
560: "football helmet",
561: "forklift",
562: "fountain",
563: "fountain pen",
564: "four-poster",
565: "freight car",
566: "French horn, horn",
567: "frying pan, frypan, skillet",
568: "fur coat",
569: "garbage truck, dustcart",
570: "gasmask, respirator, gas helmet",
571: "gas pump, gasoline pump, petrol pump, island dispenser",
572: "goblet",
573: "go-kart",
574: "golf ball",
575: "golfcart, golf cart",
576: "gondola",
577: "gong, tam-tam",
578: "gown",
579: "grand piano, grand",
580: "greenhouse, nursery, glasshouse",
581: "grille, radiator grille",
582: "grocery store, grocery, food market, market",
583: "guillotine",
584: "hair slide",
585: "hair spray",
586: "half track",
587: "hammer",
588: "hamper",
589: "hand blower, blow dryer, blow drier, hair dryer, hair drier",
590: "hand-held computer, hand-held microcomputer",
591: "handkerchief, hankie, hanky, hankey",
592: "hard disc, hard disk, fixed disk",
593: "harmonica, mouth organ, harp, mouth harp",
594: "harp",
595: "harvester, reaper",
596: "hatchet",
597: "holster",
598: "home theater, home theatre",
599: "honeycomb",
600: "hook, claw",
601: "hoopskirt, crinoline",
602: "horizontal bar, high bar",
603: "horse cart, horse-cart",
604: "hourglass",
605: "iPod",
606: "iron, smoothing iron",
607: "jack-o'-lantern",
608: "jean, blue jean, denim",
609: "jeep, landrover",
610: "jersey, T-shirt, tee shirt",
611: "jigsaw puzzle",
612: "jinrikisha, ricksha, rickshaw",
613: "joystick",
614: "kimono",
615: "knee pad",
616: "knot",
617: "lab coat, laboratory coat",
618: "ladle",
619: "lampshade, lamp shade",
620: "laptop, laptop computer",
621: "lawn mower, mower",
622: "lens cap, lens cover",
623: "letter opener, paper knife, paperknife",
624: "library",
625: "lifeboat",
626: "lighter, light, igniter, ignitor",
627: "limousine, limo",
628: "liner, ocean liner",
629: "lipstick, lip rouge",
630: "Loafer",
631: "lotion",
632: "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system",
633: "loupe, jeweler's loupe",
634: "lumbermill, sawmill",
635: "magnetic compass",
636: "mailbag, postbag",
637: "mailbox, letter box",
638: "maillot",
639: "maillot, tank suit",
640: "manhole cover",
641: "maraca",
642: "marimba, xylophone",
643: "mask",
644: "matchstick",
645: "maypole",
646: "maze, labyrinth",
647: "measuring cup",
648: "medicine chest, medicine cabinet",
649: "megalith, megalithic structure",
650: "microphone, mike",
651: "microwave, microwave oven",
652: "military uniform",
653: "milk can",
654: "minibus",
655: "miniskirt, mini",
656: "minivan",
657: "missile",
658: "mitten",
659: "mixing bowl",
660: "mobile home, manufactured home",
661: "Model T",
662: "modem",
663: "monastery",
664: "monitor",
665: "moped",
666: "mortar",
667: "mortarboard",
668: "mosque",
669: "mosquito net",
670: "motor scooter, scooter",
671: "mountain bike, all-terrain bike, off-roader",
672: "mountain tent",
673: "mouse, computer mouse",
674: "mousetrap",
675: "moving van",
676: "muzzle",
677: "nail",
678: "neck brace",
679: "necklace",
680: "nipple",
681: "notebook, notebook computer",
682: "obelisk",
683: "oboe, hautboy, hautbois",
684: "ocarina, sweet potato",
685: "odometer, hodometer, mileometer, milometer",
686: "oil filter",
687: "organ, pipe organ",
688: "oscilloscope, scope, cathode-ray oscilloscope, CRO",
689: "overskirt",
690: "oxcart",
691: "oxygen mask",
692: "packet",
693: "paddle, boat paddle",
694: "paddlewheel, paddle wheel",
695: "padlock",
696: "paintbrush",
697: "pajama, pyjama, pj's, jammies",
698: "palace",
699: "panpipe, pandean pipe, syrinx",
700: "paper towel",
701: "parachute, chute",
702: "parallel bars, bars",
703: "park bench",
704: "parking meter",
705: "passenger car, coach, carriage",
706: "patio, terrace",
707: "pay-phone, pay-station",
708: "pedestal, plinth, footstall",
709: "pencil box, pencil case",
710: "pencil sharpener",
711: "perfume, essence",
712: "Petri dish",
713: "photocopier",
714: "pick, plectrum, plectron",
715: "pickelhaube",
716: "picket fence, paling",
717: "pickup, pickup truck",
718: "pier",
719: "piggy bank, penny bank",
720: "pill bottle",
721: "pillow",
722: "ping-pong ball",
723: "pinwheel",
724: "pirate, pirate ship",
725: "pitcher, ewer",
726: "plane, carpenter's plane, woodworking plane",
727: "planetarium",
728: "plastic bag",
729: "plate rack",
730: "plow, plough",
731: "plunger, plumber's helper",
732: "Polaroid camera, Polaroid Land camera",
733: "pole",
734: "police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria",
735: "poncho",
736: "pool table, billiard table, snooker table",
737: "pop bottle, soda bottle",
738: "pot, flowerpot",
739: "potter's wheel",
740: "power drill",
741: "prayer rug, prayer mat",
742: "printer",
743: "prison, prison house",
744: "projectile, missile",
745: "projector",
746: "puck, hockey puck",
747: "punching bag, punch bag, punching ball, punchball",
748: "purse",
749: "quill, quill pen",
750: "quilt, comforter, comfort, puff",
751: "racer, race car, racing car",
752: "racket, racquet",
753: "radiator",
754: "radio, wireless",
755: "radio telescope, radio reflector",
756: "rain barrel",
757: "recreational vehicle, RV, R.V.",
758: "reel",
759: "reflex camera",
760: "refrigerator, icebox",
761: "remote control, remote",
762: "restaurant, eating house, eating place, eatery",
763: "revolver, six-gun, six-shooter",
764: "rifle",
765: "rocking chair, rocker",
766: "rotisserie",
767: "rubber eraser, rubber, pencil eraser",
768: "rugby ball",
769: "rule, ruler",
770: "running shoe",
771: "safe",
772: "safety pin",
773: "saltshaker, salt shaker",
774: "sandal",
775: "sarong",
776: "sax, saxophone",
777: "scabbard",
778: "scale, weighing machine",
779: "school bus",
780: "schooner",
781: "scoreboard",
782: "screen, CRT screen",
783: "screw",
784: "screwdriver",
785: "seat belt, seatbelt",
786: "sewing machine",
787: "shield, buckler",
788: "shoe shop, shoe-shop, shoe store",
789: "shoji",
790: "shopping basket",
791: "shopping cart",
792: "shovel",
793: "shower cap",
794: "shower curtain",
795: "ski",
796: "ski mask",
797: "sleeping bag",
798: "slide rule, slipstick",
799: "sliding door",
800: "slot, one-armed bandit",
801: "snorkel",
802: "snowmobile",
803: "snowplow, snowplough",
804: "soap dispenser",
805: "soccer ball",
806: "sock",
807: "solar dish, solar collector, solar furnace",
808: "sombrero",
809: "soup bowl",
810: "space bar",
811: "space heater",
812: "space shuttle",
813: "spatula",
814: "speedboat",
815: "spider web, spider's web",
816: "spindle",
817: "sports car, sport car",
818: "spotlight, spot",
819: "stage",
820: "steam locomotive",
821: "steel arch bridge",
822: "steel drum",
823: "stethoscope",
824: "stole",
825: "stone wall",
826: "stopwatch, stop watch",
827: "stove",
828: "strainer",
829: "streetcar, tram, tramcar, trolley, trolley car",
830: "stretcher",
831: "studio couch, day bed",
832: "stupa, tope",
833: "submarine, pigboat, sub, U-boat",
834: "suit, suit of clothes",
835: "sundial",
836: "sunglass",
837: "sunglasses, dark glasses, shades",
838: "sunscreen, sunblock, sun blocker",
839: "suspension bridge",
840: "swab, swob, mop",
841: "sweatshirt",
842: "swimming trunks, bathing trunks",
843: "swing",
844: "switch, electric switch, electrical switch",
845: "syringe",
846: "table lamp",
847: "tank, army tank, armored combat vehicle, armoured combat vehicle",
848: "tape player",
849: "teapot",
850: "teddy, teddy bear",
851: "television, television system",
852: "tennis ball",
853: "thatch, thatched roof",
854: "theater curtain, theatre curtain",
855: "thimble",
856: "thresher, thrasher, threshing machine",
857: "throne",
858: "tile roof",
859: "toaster",
860: "tobacco shop, tobacconist shop, tobacconist",
861: "toilet seat",
862: "torch",
863: "totem pole",
864: "tow truck, tow car, wrecker",
865: "toyshop",
866: "tractor",
867: "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, sem,",
868: "tray",
869: "trench coat",
870: "tricycle, trike, velocipede",
871: "trimaran",
872: "tripod",
873: "triumphal arch",
874: "trolleybus, trolley coach, trackless trolley",
875: "trombone",
876: "tub, vat",
877: "turnstile",
878: "typewriter keyboard",
879: "umbrella",
880: "unicycle, monocycle",
881: "upright, upright piano",
882: "vacuum, vacuum cleaner",
883: "vase",
884: "vault",
885: "velvet",
886: "vending machine",
887: "vestment",
888: "viaduct",
889: "violin, fiddle",
890: "volleyball",
891: "waffle iron",
892: "wall clock",
893: "wallet, billfold, notecase, pocketbook",
894: "wardrobe, closet, press",
895: "warplane, military plane",
896: "washbasin, handbasin, washbowl, lavabo, wash-hand basin",
897: "washer, automatic washer, washing machine",
898: "water bottle",
899: "water jug",
900: "water tower",
901: "whiskey jug",
902: "whistle",
903: "wig",
904: "window screen",
905: "window shade",
906: "Windsor tie",
907: "wine bottle",
908: "wing",
909: "wok",
910: "wooden spoon",
911: "wool, woolen, woollen",
912: "worm fence, snake fence, snake-rail fence, Virginia fence",
913: "wreck",
914: "yawl",
915: "yurt",
916: "web site, website, internet site, site",
917: "comic book",
918: "crossword puzzle, crossword",
919: "street sign",
920: "traffic light, traffic signal, stoplight",
921: "book jacket, dust cover, dust jacket, dust wrapper",
922: "menu",
923: "plate",
924: "guacamole",
925: "consomme",
926: "hot pot, hotpot",
927: "trifle",
928: "ice cream, icecream",
929: "ice lolly, lolly, lollipop, popsicle",
930: "French loaf",
931: "bagel, beigel",
932: "pretzel",
933: "cheeseburger",
934: "hotdog, hot dog, red hot",
935: "mashed potato",
936: "head cabbage",
937: "broccoli",
938: "cauliflower",
939: "zucchini, courgette",
940: "spaghetti squash",
941: "acorn squash",
942: "butternut squash",
943: "cucumber, cuke",
944: "artichoke, globe artichoke",
945: "bell pepper",
946: "cardoon",
947: "mushroom",
948: "Granny Smith",
949: "strawberry",
950: "orange",
951: "lemon",
952: "fig",
953: "pineapple, ananas",
954: "banana",
955: "jackfruit, jak, jack",
956: "custard apple",
957: "pomegranate",
958: "hay",
959: "carbonara",
960: "chocolate sauce, chocolate syrup",
961: "dough",
962: "meat loaf, meatloaf",
963: "pizza, pizza pie",
964: "potpie",
965: "burrito",
966: "red wine",
967: "espresso",
968: "cup",
969: "eggnog",
970: "alp",
971: "bubble",
972: "cliff, drop, drop-off",
973: "coral reef",
974: "geyser",
975: "lakeside, lakeshore",
976: "promontory, headland, head, foreland",
977: "sandbar, sand bar",
978: "seashore, coast, seacoast, sea-coast",
979: "valley, vale",
980: "volcano",
981: "ballplayer, baseball player",
982: "groom, bridegroom",
983: "scuba diver",
984: "rapeseed",
985: "daisy",
986: "yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripium parviflorum",
987: "corn",
988: "acorn",
989: "hip, rose hip, rosehip",
990: "buckeye, horse chestnut, conker",
991: "coral fungus",
992: "agaric",
993: "gyromitra",
994: "stinkhorn, carrion fungus",
995: "earthstar",
996: "hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa",
997: "bolete",
998: "ear, spike, capitulum",
999: "toilet tissue, toilet paper, bathroom tissue",
}
path_ffhq = hf_hub_download(repo_id="brownvc/BaselineGAN-FFHQ-256x256", filename="network-snapshot-final.pkl", local_dir="ffhq")
path_imagenet = hf_hub_download(repo_id="brownvc/BaselineGAN-ImgNet-64x64-v0", filename="network-snapshot-final.pkl", local_dir="imagenet")
# Configuration
networks = {
"FFHQ (Faces) 256px": {
"path": path_ffhq,
"G": None,
"conditional": False
},
"ImageNet 64px": {
"path": path_imagenet,
"G": None,
"conditional": True
}
}
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Preload all networks
for network_name, network_info in networks.items():
print(f'Loading network {network_name} from "{network_info["path"]}"...')
with dnnlib.util.open_url(network_info["path"]) as f:
network_info["G"] = legacy.load_network_pkl(f)['G_ema'].to(device)
def generate_random_images(network_choice, class_label=None, num_images=2):
# Get the selected generator
G = networks[network_choice]["G"]
# Generate random seeds
seeds = np.random.randint(0, 100000, num_images)
# Setup labels
if networks[network_choice]["conditional"] and class_label is not None:
# Extract class index from the selection string
class_idx = int(class_label.split(':')[0])
label = torch.zeros([1, G.c_dim], device=device)
label[:, class_idx] = 1
else:
label = torch.zeros([1, G.c_dim], device=device)
# Generate and save images
output_images = []
for seed_idx, seed in enumerate(seeds):
print(f'Generating image for seed {seed} ({seed_idx+1}/{num_images}) ...')
z = torch.from_numpy(np.random.RandomState(seed).randn(1, G.z_dim)).to(device)
img = G(z, label)
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
pil_img = PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB')
output_images.append(pil_img)
return output_images
# Format ImageNet classes for dropdown
imagenet_choices = [f"{idx}: {name}" for idx, name in imagenet_classes.items()]
css = '''
.gradio-container{max-width: 640px !important}
'''
# Create Gradio interface
with gr.Blocks(css=css) as demo:
with gr.Column():
gr.Markdown("# GANs are so back!? R3GAN Demo")
gr.Markdown("Demo for the stable, easy to train and modern R3GAN")
gr.Markdown("[[Paper](https://huggingface.co/papers/2501.05441)] [[Models](https://huggingface.co/collections/brownvc/r3gan-6780a350063dd44ffb1fe08a)] [[Code](https://github.com/brownvc/R3GAN/)]")
total_images = gr.State(2)
# Add radio buttons for network selection
network_choice = gr.Radio(
choices=list(networks.keys()),
value=list(networks.keys())[0],
label="Choose Network"
)
# Add conditional class selector for ImageNet
with gr.Column(visible=False) as class_selector:
class_label = gr.Dropdown(
choices=imagenet_choices,
label="ImageNet Class",
value=imagenet_choices[0],
filterable=True
)
generate_btn = gr.Button("Generate Images")
# Create a gallery to display images
gallery = gr.Gallery(
label="Generated Images",
show_label=True,
elem_id="gallery",
columns=2,
rows=1,
height="auto"
)
with gr.Accordion("How does it work?", open=False):
gr.Markdown('''# The GAN is dead; long live the GAN! A Modern GAN Baseline
![Poster](https://cdn-uploads.huggingface.co/production/uploads/620573d0522e40b4a18d8763/IMeKij7GEtgCHE6EY-6Uj.png)
Abstract: There is a widely-spread claim that GANs are difficult to train, and GAN architectures in the literature are littered with empirical tricks. We provide evidence against this claim and build a modern GAN baseline in a more principled manner. First, we derive a well-behaved regularized relativistic GAN loss that addresses issues of mode dropping and non-convergence that were previously tackled via a bag of ad-hoc tricks. We analyze our loss mathematically and prove that it admits local convergence guarantees, unlike most existing relativistic losses. Second, our new loss allows us to discard all ad-hoc tricks and replace outdated backbones used in common GANs with modern architectures. Using StyleGAN2 as an example, we present a roadmap of simplification and modernization that results in a new minimalist baseline -- R3GAN. Despite being simple, our approach surpasses StyleGAN2 on FFHQ, ImageNet, CIFAR, and Stacked MNIST datasets, and compares favorably against state-of-the-art GANs and diffusion models.
[Read the paper](https://huggingface.co/papers/2501.05441)''')
# Show/hide class selector based on network choice
def update_class_selector(choice):
if(choice == "ImageNet 64px"):
return gr.update(visible=True), gr.update(columns=5, rows=1), 5
else:
return gr.update(visible=False), gr.update(columns=2, rows=1), 2
network_choice.change(
fn=update_class_selector,
inputs=[network_choice],
outputs=[class_selector, gallery, total_images]
)
# Connect the button to the generation function
generate_btn.click(
fn=generate_random_images,
inputs=[network_choice, class_label, total_images],
outputs=gallery
)
if __name__ == "__main__":
demo.launch(share=True) |