multimodalart's picture
Update app.py
b99f8e6 verified
raw
history blame
19.1 kB
import os
import gradio as gr
import json
import logging
import torch
from PIL import Image
import spaces
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
import copy
import random
import time
import re
import math
import numpy as np
# Load LoRAs from JSON
loras = [
{
"repo": "flymy-ai/qwen-image-realism-lora",
"image": "https://huggingface.co/flymy-ai/qwen-image-realism-lora/resolve/main/assets/flymy_realism.png",
"trigger_word": "Super Realism portrait of",
"trigger_position": "prepend",
"title": "Super Realism"
},
{
"repo": "threecrowco/VolkClipartQwen",
"image": "https://huggingface.co/threecrowco/VolkClipartQwen/resolve/main/images/_app_ai-toolkit_output_VolkDrawings_Qwen_v1_samples_1754805220500__000003000_3.jpg",
"trigger_word": "volk clipart, black and white, ",
"trigger_position": "prepend",
"title": "Volk Clipart"
},
{
"repo": "janekm/analog_film",
"image": "https://huggingface.co/spaces/multimodalart/Qwen-Image-LoRA-Explorer/resolve/main/cat.webp",
"trigger_word": "fifthel",
"trigger_position": "prepend",
"weights": "converted_complete.safetensors",
"title": "Analog Film"
},
{
"repo": "valiantcat/Qwen-Image-Gufeng-LoRA",
"image": "https://huggingface.co/valiantcat/Qwen-Image-Gufeng-LoRA/resolve/main/result/output1.png",
"trigger_word": "gfwm, The image is a digital illustration",
"trigger_position": "prepend",
"title": "Gufeng Style"
},
{
"repo": "alfredplpl/qwen-image-modern-anime-lora",
"image": "https://huggingface.co/alfredplpl/qwen-image-modern-anime-lora/resolve/main/sample1.jpg",
"trigger_word": "Japanese modern anime style, ",
"trigger_position": "prepend",
"title": "Modern Anime"
},
{
"repo": "lichorosario/qwen-image-dottrmstr",
"image": "https://huggingface.co/lichorosario/qwen-image-dottrmstr/resolve/main/images/Day_of_the_Tentacle_Remastered_(PC)_08.jpg",
"trigger_word": "DOTTRMSTR",
"trigger_position": "prepend",
"title": "Day of the Tentacle Style"
}
]
# Initialize the base model
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "Qwen/Qwen-Image"
# Scheduler configuration from the Qwen-Image-Lightning repository
scheduler_config = {
"base_image_seq_len": 256,
"base_shift": math.log(3),
"invert_sigmas": False,
"max_image_seq_len": 8192,
"max_shift": math.log(3),
"num_train_timesteps": 1000,
"shift": 1.0,
"shift_terminal": None,
"stochastic_sampling": False,
"time_shift_type": "exponential",
"use_beta_sigmas": False,
"use_dynamic_shifting": True,
"use_exponential_sigmas": False,
"use_karras_sigmas": False,
}
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
pipe = DiffusionPipeline.from_pretrained(
base_model, scheduler=scheduler, torch_dtype=dtype
).to(device)
# Lightning LoRA info (no global state)
LIGHTNING_LORA_REPO = "lightx2v/Qwen-Image-Lightning"
LIGHTNING_LORA_WEIGHT = "Qwen-Image-Lightning-8steps-V1.0.safetensors"
MAX_SEED = np.iinfo(np.int32).max
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
def get_image_size(aspect_ratio):
"""Converts aspect ratio string to width, height tuple."""
if aspect_ratio == "1:1":
return 1024, 1024
elif aspect_ratio == "16:9":
return 1152, 640
elif aspect_ratio == "9:16":
return 640, 1152
elif aspect_ratio == "4:3":
return 1024, 768
elif aspect_ratio == "3:4":
return 768, 1024
elif aspect_ratio == "3:2":
return 1024, 688
elif aspect_ratio == "2:3":
return 688, 1024
else:
return 1024, 1024
def update_selection(evt: gr.SelectData, aspect_ratio):
selected_lora = loras[evt.index]
new_placeholder = f"Type a prompt for {selected_lora['title']}"
lora_repo = selected_lora["repo"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
# Update aspect ratio if specified in LoRA config
if "aspect" in selected_lora:
if selected_lora["aspect"] == "portrait":
aspect_ratio = "9:16"
elif selected_lora["aspect"] == "landscape":
aspect_ratio = "16:9"
else:
aspect_ratio = "1:1"
return (
gr.update(placeholder=new_placeholder),
updated_text,
evt.index,
aspect_ratio,
)
def handle_speed_mode(speed_mode):
"""Update UI based on speed/quality toggle."""
if speed_mode == "Speed (8 steps)":
return gr.update(value="Speed mode selected - 8 steps with Lightning LoRA"), 8, 1.0
else:
return gr.update(value="Quality mode selected - 45 steps for best quality"), 45, 3.5
@spaces.GPU(duration=70)
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, negative_prompt=""):
pipe.to("cuda")
generator = torch.Generator(device="cuda").manual_seed(seed)
with calculateDuration("Generating image"):
# Generate image
image = pipe(
prompt=prompt_mash,
negative_prompt=negative_prompt,
num_inference_steps=steps,
true_cfg_scale=cfg_scale, # Use true_cfg_scale for Qwen-Image
width=width,
height=height,
generator=generator,
).images[0]
return image
@spaces.GPU(duration=70)
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, aspect_ratio, lora_scale, speed_mode, progress=gr.Progress(track_tqdm=True)):
if selected_index is None:
raise gr.Error("You must select a LoRA before proceeding.")
selected_lora = loras[selected_index]
lora_path = selected_lora["repo"]
trigger_word = selected_lora["trigger_word"]
# Prepare prompt with trigger word
if trigger_word:
if "trigger_position" in selected_lora:
if selected_lora["trigger_position"] == "prepend":
prompt_mash = f"{trigger_word} {prompt}"
else:
prompt_mash = f"{prompt} {trigger_word}"
else:
prompt_mash = f"{trigger_word} {prompt}"
else:
prompt_mash = prompt
# Always unload any existing LoRAs first to avoid conflicts
with calculateDuration("Unloading existing LoRAs"):
pipe.unload_lora_weights()
# Load LoRAs based on speed mode
if speed_mode == "Speed (8 steps)":
with calculateDuration("Loading Lightning LoRA and style LoRA"):
# Load Lightning LoRA first
pipe.load_lora_weights(
LIGHTNING_LORA_REPO,
weight_name=LIGHTNING_LORA_WEIGHT,
adapter_name="lightning"
)
# Load the selected style LoRA
weight_name = selected_lora.get("weights", None)
pipe.load_lora_weights(
lora_path,
weight_name=weight_name,
low_cpu_mem_usage=True,
adapter_name="style"
)
# Set both adapters active with their weights
pipe.set_adapters(["lightning", "style"], adapter_weights=[1.0, lora_scale])
else:
# Quality mode - only load the style LoRA
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
weight_name = selected_lora.get("weights", None)
pipe.load_lora_weights(
lora_path,
weight_name=weight_name,
low_cpu_mem_usage=True
)
# Set random seed for reproducibility
with calculateDuration("Randomizing seed"):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Get image dimensions from aspect ratio
width, height = get_image_size(aspect_ratio)
# Generate the image
final_image = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale)
return final_image, seed
def get_huggingface_safetensors(link):
split_link = link.split("/")
if len(split_link) != 2:
raise Exception("Invalid Hugging Face repository link format.")
print(f"Repository attempted: {split_link}")
# Load model card
model_card = ModelCard.load(link)
base_model = model_card.data.get("base_model")
print(f"Base model: {base_model}")
# Validate model type (for Qwen-Image)
acceptable_models = {"Qwen/Qwen-Image"}
models_to_check = base_model if isinstance(base_model, list) else [base_model]
if not any(model in acceptable_models for model in models_to_check):
raise Exception("Not a Qwen-Image LoRA!")
# Extract image and trigger word
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
trigger_word = model_card.data.get("instance_prompt", "")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
# Initialize Hugging Face file system
fs = HfFileSystem()
try:
list_of_files = fs.ls(link, detail=False)
# Find safetensors file
safetensors_name = None
for file in list_of_files:
filename = file.split("/")[-1]
if filename.endswith(".safetensors"):
safetensors_name = filename
break
if not safetensors_name:
raise Exception("No valid *.safetensors file found in the repository.")
except Exception as e:
print(e)
raise Exception("You didn't include a valid Hugging Face repository with a *.safetensors LoRA")
return split_link[1], link, safetensors_name, trigger_word, image_url
def check_custom_model(link):
print(f"Checking a custom model on: {link}")
if link.endswith('.safetensors'):
if 'huggingface.co' in link:
parts = link.split('/')
try:
hf_index = parts.index('huggingface.co')
username = parts[hf_index + 1]
repo_name = parts[hf_index + 2]
repo = f"{username}/{repo_name}"
safetensors_name = parts[-1]
try:
model_card = ModelCard.load(repo)
trigger_word = model_card.data.get("instance_prompt", "")
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
image_url = f"https://huggingface.co/{repo}/resolve/main/{image_path}" if image_path else None
except:
trigger_word = ""
image_url = None
return repo_name, repo, safetensors_name, trigger_word, image_url
except:
raise Exception("Invalid safetensors URL format")
if link.startswith("https://"):
if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"):
link_split = link.split("huggingface.co/")
return get_huggingface_safetensors(link_split[1])
else:
return get_huggingface_safetensors(link)
def add_custom_lora(custom_lora):
global loras
if custom_lora:
try:
title, repo, path, trigger_word, image = check_custom_model(custom_lora)
print(f"Loaded custom LoRA: {repo}")
card = f'''
<div class="custom_lora_card">
<span>Loaded custom LoRA:</span>
<div class="card_internal">
<img src="{image}" />
<div>
<h3>{title}</h3>
<small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small>
</div>
</div>
</div>
'''
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
if existing_item_index is None:
new_item = {
"image": image,
"title": title,
"repo": repo,
"weights": path,
"trigger_word": trigger_word
}
print(new_item)
loras.append(new_item)
existing_item_index = len(loras) - 1 # Get the actual index after adding
return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
except Exception as e:
gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-Qwen-Image LoRA, this was the issue: {e}")
return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-Qwen-Image LoRA"), gr.update(visible=True), gr.update(), "", None, ""
else:
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
def remove_custom_lora():
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
run_lora.zerogpu = True
css = '''
#gen_btn{height: 100%}
#gen_column{align-self: stretch}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#gallery .grid-wrap{height: 10vh}
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
.card_internal{display: flex;height: 100px;margin-top: .5em}
.card_internal img{margin-right: 1em}
.styler{--form-gap-width: 0px !important}
#speed_status{padding: .5em; border-radius: 5px; margin: 1em 0}
'''
with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 60)) as app:
title = gr.HTML(
"""<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_logo.png" alt="Qwen-Image" style="width: 280px; margin: 0 auto">
<h3 style="margin-top: -10px">LoRA Explorer</h3>""",
elem_id="title",
)
selected_index = gr.State(None)
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
with gr.Column(scale=1, elem_id="gen_column"):
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
with gr.Row():
with gr.Column():
selected_info = gr.Markdown("")
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in loras],
label="LoRA Gallery",
allow_preview=False,
columns=3,
elem_id="gallery",
show_share_button=False
)
with gr.Group():
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="username/qwen-image-custom-lora")
gr.Markdown("[Check Qwen-Image LoRAs](https://huggingface.co/models?other=base_model:adapter:Qwen/Qwen-Image)", elem_id="lora_list")
custom_lora_info = gr.HTML(visible=False)
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
with gr.Column():
result = gr.Image(label="Generated Image")
with gr.Row():
speed_mode = gr.Radio(
label="Generation Mode",
choices=["Speed (8 steps)", "Quality (45 steps)"],
value="Quality (45 steps)",
info="Speed mode uses Lightning LoRA for faster generation"
)
speed_status = gr.Markdown("Quality mode active", elem_id="speed_status")
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
with gr.Column():
with gr.Row():
aspect_ratio = gr.Radio(
label="Aspect Ratio",
choices=["1:1", "16:9", "9:16", "4:3", "3:4", "3:2", "2:3"],
value="1:1"
)
with gr.Row():
cfg_scale = gr.Slider(
label="Guidance Scale (True CFG)",
minimum=1.0,
maximum=5.0,
step=0.1,
value=3.5,
info="Lower for speed mode, higher for quality"
)
steps = gr.Slider(
label="Steps",
minimum=4,
maximum=50,
step=1,
value=45,
info="Automatically set by speed mode"
)
with gr.Row():
randomize_seed = gr.Checkbox(True, label="Randomize seed")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=2, step=0.01, value=1.0)
# Event handlers
gallery.select(
update_selection,
inputs=[aspect_ratio],
outputs=[prompt, selected_info, selected_index, aspect_ratio]
)
speed_mode.change(
handle_speed_mode,
inputs=[speed_mode],
outputs=[speed_status, steps, cfg_scale]
)
custom_lora.input(
add_custom_lora,
inputs=[custom_lora],
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
)
custom_lora_button.click(
remove_custom_lora,
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
)
gr.on(
triggers=[generate_button.click, prompt.submit],
fn=run_lora,
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, aspect_ratio, lora_scale, speed_mode],
outputs=[result, seed]
)
app.queue()
app.launch()