Spaces:
Running
on
Zero
Running
on
Zero
| # app.py | |
| import os | |
| import sys | |
| import time | |
| import gradio as gr | |
| import spaces | |
| from huggingface_hub import snapshot_download | |
| from huggingface_hub.utils import GatedRepoError, RepositoryNotFoundError, RevisionNotFoundError | |
| from pathlib import Path | |
| import tempfile | |
| from pydub import AudioSegment | |
| # Add the src directory to the system path to allow for local imports | |
| sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), 'src'))) | |
| from models.inference.moda_test import LiveVASAPipeline, emo_map, set_seed | |
| # --- Configuration --- | |
| # Set seed for reproducibility | |
| set_seed(42) | |
| # Paths and constants for the Gradio demo | |
| DEFAULT_CFG_PATH = "configs/audio2motion/inference/inference.yaml" | |
| DEFAULT_MOTION_MEAN_STD_PATH = "src/datasets/mean.pt" | |
| DEFAULT_SILENT_AUDIO_PATH = "src/examples/silent-audio.wav" | |
| OUTPUT_DIR = "gradio_output" | |
| WEIGHTS_DIR = "pretrain_weights" | |
| REPO_ID = "lixinyizju/moda" | |
| # --- Download Pre-trained Weights from Hugging Face Hub --- | |
| def download_weights(): | |
| """ | |
| Downloads pre-trained weights from Hugging Face Hub if they don't exist locally. | |
| """ | |
| # A simple check for a key file to see if the download is likely complete | |
| motion_model_file = os.path.join(WEIGHTS_DIR, "moda", "net-200.pth") | |
| if not os.path.exists(motion_model_file): | |
| print(f"Weights not found locally. Downloading from Hugging Face Hub repo '{REPO_ID}'...") | |
| print(f"This may take a while depending on your internet connection.") | |
| try: | |
| snapshot_download( | |
| repo_id=REPO_ID, | |
| local_dir=WEIGHTS_DIR, | |
| local_dir_use_symlinks=False, # Use False to copy files directly; safer for Windows | |
| resume_download=True, | |
| ) | |
| print("Weights downloaded successfully.") | |
| except GatedRepoError: | |
| raise gr.Error(f"Access to the repository '{REPO_ID}' is gated. Please visit https://huggingface.co/{REPO_ID} to request access.") | |
| except (RepositoryNotFoundError, RevisionNotFoundError): | |
| raise gr.Error(f"The repository '{REPO_ID}' was not found. Please check the repository ID.") | |
| except Exception as e: | |
| print(f"An error occurred during download: {e}") | |
| raise gr.Error(f"Failed to download models. Please check your internet connection and try again. Error: {e}") | |
| else: | |
| print(f"Found existing weights at '{WEIGHTS_DIR}'. Skipping download.") | |
| # --- Audio Conversion Function --- | |
| def ensure_wav_format(audio_path): | |
| """ | |
| Ensures the audio file is in WAV format. If not, converts it to WAV. | |
| Returns the path to the WAV file (either original or converted). | |
| """ | |
| if audio_path is None: | |
| return None | |
| audio_path = Path(audio_path) | |
| # Check if already WAV | |
| if audio_path.suffix.lower() == '.wav': | |
| print(f"Audio is already in WAV format: {audio_path}") | |
| return str(audio_path) | |
| # Convert to WAV | |
| print(f"Converting audio from {audio_path.suffix} to WAV format...") | |
| try: | |
| # Load the audio file | |
| audio = AudioSegment.from_file(audio_path) | |
| # Create a temporary WAV file | |
| with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp_file: | |
| wav_path = tmp_file.name | |
| # Export as WAV with standard settings | |
| audio.export( | |
| wav_path, | |
| format='wav', | |
| parameters=["-ar", "16000", "-ac", "1"] # 16kHz, mono - adjust if your model needs different settings | |
| ) | |
| print(f"Audio converted successfully to: {wav_path}") | |
| return wav_path | |
| except Exception as e: | |
| print(f"Error converting audio: {e}") | |
| raise gr.Error(f"Failed to convert audio file to WAV format. Error: {e}") | |
| # --- Initialization --- | |
| # Create output directory if it doesn't exist | |
| os.makedirs(OUTPUT_DIR, exist_ok=True) | |
| # Download weights before initializing the pipeline | |
| download_weights() | |
| # Instantiate the pipeline once to avoid reloading models on every request | |
| print("Initializing MoDA pipeline...") | |
| try: | |
| pipeline = LiveVASAPipeline( | |
| cfg_path=DEFAULT_CFG_PATH, | |
| motion_mean_std_path=DEFAULT_MOTION_MEAN_STD_PATH | |
| ) | |
| print("MoDA pipeline initialized successfully.") | |
| except Exception as e: | |
| print(f"Error initializing pipeline: {e}") | |
| pipeline = None | |
| # Invert the emo_map for easy lookup from the dropdown value | |
| emo_name_to_id = {v: k for k, v in emo_map.items()} | |
| # --- Core Generation Function --- | |
| def generate_motion(source_image_path, driving_audio_path, emotion_name, cfg_scale, progress=gr.Progress(track_tqdm=True)): | |
| """ | |
| The main function that takes Gradio inputs and generates the talking head video. | |
| """ | |
| if pipeline is None: | |
| raise gr.Error("Pipeline failed to initialize. Check the console logs for details.") | |
| if source_image_path is None: | |
| raise gr.Error("Please upload a source image.") | |
| if driving_audio_path is None: | |
| raise gr.Error("Please upload a driving audio file.") | |
| start_time = time.time() | |
| # Ensure audio is in WAV format | |
| wav_audio_path = ensure_wav_format(driving_audio_path) | |
| temp_wav_created = wav_audio_path != driving_audio_path | |
| # Create a unique subdirectory for this run | |
| timestamp = time.strftime("%Y%m%d-%H%M%S") | |
| run_output_dir = os.path.join(OUTPUT_DIR, timestamp) | |
| os.makedirs(run_output_dir, exist_ok=True) | |
| # Get emotion ID from its name | |
| emotion_id = emo_name_to_id.get(emotion_name, 8) # Default to 'None' (ID 8) if not found | |
| print(f"Starting generation with the following parameters:") | |
| print(f" Source Image: {source_image_path}") | |
| print(f" Driving Audio (original): {driving_audio_path}") | |
| print(f" Driving Audio (WAV): {wav_audio_path}") | |
| print(f" Emotion: {emotion_name} (ID: {emotion_id})") | |
| print(f" CFG Scale: {cfg_scale}") | |
| try: | |
| # Call the pipeline's inference method with the WAV audio | |
| result_video_path = pipeline.driven_sample( | |
| image_path=source_image_path, | |
| audio_path=wav_audio_path, | |
| cfg_scale=float(cfg_scale), | |
| emo=emotion_id, | |
| save_dir=".", | |
| smooth=False, # Smoothing can be slow, disable for a faster demo | |
| silent_audio_path=DEFAULT_SILENT_AUDIO_PATH, | |
| ) | |
| except Exception as e: | |
| print(f"An error occurred during video generation: {e}") | |
| import traceback | |
| traceback.print_exc() | |
| raise gr.Error(f"An unexpected error occurred: {str(e)}. Please check the console for details.") | |
| finally: | |
| # Clean up temporary WAV file if created | |
| if temp_wav_created and os.path.exists(wav_audio_path): | |
| try: | |
| os.remove(wav_audio_path) | |
| print(f"Cleaned up temporary WAV file: {wav_audio_path}") | |
| except Exception as e: | |
| print(f"Warning: Could not delete temporary file {wav_audio_path}: {e}") | |
| end_time = time.time() | |
| processing_time = end_time - start_time | |
| result_video_path = Path(result_video_path) | |
| final_path = result_video_path.with_name(f"final_{result_video_path.stem}{result_video_path.suffix}") | |
| print(f"Video generated successfully at: {final_path}") | |
| print(f"Processing time: {processing_time:.2f} seconds.") | |
| return final_path | |
| # --- Gradio UI Definition --- | |
| with gr.Blocks(theme=gr.themes.Soft(), css=".gradio-container {max-width: 960px !important; margin: 0 auto !important}") as demo: | |
| gr.HTML( | |
| """ | |
| <div align='center'> | |
| <h1>MoDA: Multi-modal Diffusion Architecture for Talking Head Generation</h1> | |
| <p style="display:flex"> | |
| <a href='https://lixinyyang.github.io/MoDA.github.io/'><img src='https://img.shields.io/badge/Project-Page-blue'></a> | |
| <a href='https://arxiv.org/abs/2507.03256'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a> | |
| <a href='https://github.com/lixinyyang/MoDA/'><img src='https://img.shields.io/badge/Code-Github-green'></a> | |
| </p> | |
| </div> | |
| """ | |
| ) | |
| with gr.Row(variant="panel"): | |
| with gr.Column(scale=1): | |
| with gr.Row(): | |
| source_image = gr.Image(label="Source Image", type="filepath", value="src/examples/reference_images/7.jpg") | |
| with gr.Row(): | |
| driving_audio = gr.Audio( | |
| label="Driving Audio", | |
| type="filepath", | |
| value="src/examples/driving_audios/5.wav" | |
| ) | |
| with gr.Row(): | |
| emotion_dropdown = gr.Dropdown( | |
| label="Emotion", | |
| choices=list(emo_map.values()), | |
| value="None" | |
| ) | |
| with gr.Row(): | |
| cfg_slider = gr.Slider( | |
| label="CFG Scale", | |
| minimum=1.0, | |
| maximum=3.0, | |
| step=0.05, | |
| value=1.2 | |
| ) | |
| submit_button = gr.Button("Generate Video", variant="primary") | |
| with gr.Column(scale=1): | |
| output_video = gr.Video(label="Generated Video") | |
| gr.Markdown( | |
| """ | |
| --- | |
| ### **Disclaimer** | |
| This project is intended for academic research, and we explicitly disclaim any responsibility for user-generated content. Users are solely liable for their actions while using this generative model. | |
| """ | |
| ) | |
| submit_button.click( | |
| fn=generate_motion, | |
| inputs=[source_image, driving_audio, emotion_dropdown, cfg_slider], | |
| outputs=output_video | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(share=True) |