Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	Create app.py
Browse files
    	
        app.py
    ADDED
    
    | @@ -0,0 +1,123 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import gradio as gr
         | 
| 2 | 
            +
            import numpy as np
         | 
| 3 | 
            +
            import random
         | 
| 4 | 
            +
            import spaces
         | 
| 5 | 
            +
            from diffusers import AuraFlowPipeline
         | 
| 6 | 
            +
            import torch
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            device = "cuda" if torch.cuda.is_available() else "cpu"
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            pipe = AuraFlowPipeline.from_pretrained(
         | 
| 11 | 
            +
            	"fal/AuraFlow-v0.2",
         | 
| 12 | 
            +
                torch_dtype=torch.float16
         | 
| 13 | 
            +
            ).to("cuda")
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            MAX_SEED = np.iinfo(np.int32).max
         | 
| 16 | 
            +
            MAX_IMAGE_SIZE = 1024
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            @spaces.GPU()
         | 
| 19 | 
            +
            def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
         | 
| 20 | 
            +
                generator = torch.Generator().manual_seed(seed)
         | 
| 21 | 
            +
                image = pipe(
         | 
| 22 | 
            +
                        prompt = prompt, 
         | 
| 23 | 
            +
                        width = width,
         | 
| 24 | 
            +
                        height = height,
         | 
| 25 | 
            +
                        num_inference_steps = num_inference_steps, 
         | 
| 26 | 
            +
                        generator = generator
         | 
| 27 | 
            +
                ).images[0] 
         | 
| 28 | 
            +
                return image, seed
         | 
| 29 | 
            +
             
         | 
| 30 | 
            +
            examples = [
         | 
| 31 | 
            +
                "A photo of a lavender cat",
         | 
| 32 | 
            +
                "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
         | 
| 33 | 
            +
                "An astronaut riding a green horse",
         | 
| 34 | 
            +
                "A delicious ceviche cheesecake slice",
         | 
| 35 | 
            +
            ]
         | 
| 36 | 
            +
             | 
| 37 | 
            +
            css="""
         | 
| 38 | 
            +
            #col-container {
         | 
| 39 | 
            +
                margin: 0 auto;
         | 
| 40 | 
            +
                max-width: 520px;
         | 
| 41 | 
            +
            }
         | 
| 42 | 
            +
            """
         | 
| 43 | 
            +
             | 
| 44 | 
            +
            with gr.Blocks(css=css) as demo:
         | 
| 45 | 
            +
                
         | 
| 46 | 
            +
                with gr.Column(elem_id="col-container"):
         | 
| 47 | 
            +
                    gr.Markdown(f"""
         | 
| 48 | 
            +
                    # FLUX.1 Schnell
         | 
| 49 | 
            +
                    Demo of the [FLUX.1 Schnell](https://huggingface.co/fal/AuraFlow) 12B parameters rectified flow transformer distilled from [FLUX.1 Pro](https://blackforestlabs.ai/) for fast generation in 4 steps
         | 
| 50 | 
            +
                    [[blog](https://blackforestlabs.ai/2024/07/31/announcing-black-forest-labs/)] [[model](https://black-forest-labs/FLUX.1-schnell)]]
         | 
| 51 | 
            +
                    """)
         | 
| 52 | 
            +
                    
         | 
| 53 | 
            +
                    with gr.Row():
         | 
| 54 | 
            +
                        
         | 
| 55 | 
            +
                        prompt = gr.Text(
         | 
| 56 | 
            +
                            label="Prompt",
         | 
| 57 | 
            +
                            show_label=False,
         | 
| 58 | 
            +
                            max_lines=1,
         | 
| 59 | 
            +
                            placeholder="Enter your prompt",
         | 
| 60 | 
            +
                            container=False,
         | 
| 61 | 
            +
                        )
         | 
| 62 | 
            +
                        
         | 
| 63 | 
            +
                        run_button = gr.Button("Run", scale=0)
         | 
| 64 | 
            +
                    
         | 
| 65 | 
            +
                    result = gr.Image(label="Result", show_label=False)
         | 
| 66 | 
            +
                    
         | 
| 67 | 
            +
                    with gr.Accordion("Advanced Settings", open=False):
         | 
| 68 | 
            +
                        
         | 
| 69 | 
            +
                        seed = gr.Slider(
         | 
| 70 | 
            +
                            label="Seed",
         | 
| 71 | 
            +
                            minimum=0,
         | 
| 72 | 
            +
                            maximum=MAX_SEED,
         | 
| 73 | 
            +
                            step=1,
         | 
| 74 | 
            +
                            value=0,
         | 
| 75 | 
            +
                        )
         | 
| 76 | 
            +
                        
         | 
| 77 | 
            +
                        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
         | 
| 78 | 
            +
                        
         | 
| 79 | 
            +
                        with gr.Row():
         | 
| 80 | 
            +
                            
         | 
| 81 | 
            +
                            width = gr.Slider(
         | 
| 82 | 
            +
                                label="Width",
         | 
| 83 | 
            +
                                minimum=256,
         | 
| 84 | 
            +
                                maximum=MAX_IMAGE_SIZE,
         | 
| 85 | 
            +
                                step=32,
         | 
| 86 | 
            +
                                value=1024,
         | 
| 87 | 
            +
                            )
         | 
| 88 | 
            +
                            
         | 
| 89 | 
            +
                            height = gr.Slider(
         | 
| 90 | 
            +
                                label="Height",
         | 
| 91 | 
            +
                                minimum=256,
         | 
| 92 | 
            +
                                maximum=MAX_IMAGE_SIZE,
         | 
| 93 | 
            +
                                step=32,
         | 
| 94 | 
            +
                                value=1024,
         | 
| 95 | 
            +
                            )
         | 
| 96 | 
            +
                        
         | 
| 97 | 
            +
                        with gr.Row():
         | 
| 98 | 
            +
                            
         | 
| 99 | 
            +
              
         | 
| 100 | 
            +
                            num_inference_steps = gr.Slider(
         | 
| 101 | 
            +
                                label="Number of inference steps",
         | 
| 102 | 
            +
                                minimum=1,
         | 
| 103 | 
            +
                                maximum=50,
         | 
| 104 | 
            +
                                step=1,
         | 
| 105 | 
            +
                                value=4,
         | 
| 106 | 
            +
                            )
         | 
| 107 | 
            +
                    
         | 
| 108 | 
            +
                    gr.Examples(
         | 
| 109 | 
            +
                        examples = examples,
         | 
| 110 | 
            +
                        fn = infer_example,
         | 
| 111 | 
            +
                        inputs = [prompt],
         | 
| 112 | 
            +
                        outputs = [result, seed],
         | 
| 113 | 
            +
                        cache_examples="lazy"
         | 
| 114 | 
            +
                    )
         | 
| 115 | 
            +
             | 
| 116 | 
            +
                gr.on(
         | 
| 117 | 
            +
                    triggers=[run_button.click, prompt.submit, negative_prompt.submit],
         | 
| 118 | 
            +
                    fn = infer,
         | 
| 119 | 
            +
                    inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
         | 
| 120 | 
            +
                    outputs = [result, seed]
         | 
| 121 | 
            +
                )
         | 
| 122 | 
            +
             | 
| 123 | 
            +
            demo.queue().launch()
         | 
 
			
