Spaces:
Runtime error
Runtime error
Commit
·
556c58e
1
Parent(s):
a1e84d6
Add C-MTEB
Browse files
app.py
CHANGED
|
@@ -66,7 +66,19 @@ TASK_LIST_CLASSIFICATION_SV = [
|
|
| 66 |
"SweRecClassification",
|
| 67 |
]
|
| 68 |
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
TASK_LIST_CLUSTERING = [
|
| 72 |
"ArxivClusteringP2P",
|
|
@@ -90,12 +102,24 @@ TASK_LIST_CLUSTERING_DE = [
|
|
| 90 |
"TenKGnadClusteringS2S",
|
| 91 |
]
|
| 92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
TASK_LIST_PAIR_CLASSIFICATION = [
|
| 94 |
"SprintDuplicateQuestions",
|
| 95 |
"TwitterSemEval2015",
|
| 96 |
"TwitterURLCorpus",
|
| 97 |
]
|
| 98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
TASK_LIST_RERANKING = [
|
| 100 |
"AskUbuntuDupQuestions",
|
| 101 |
"MindSmallReranking",
|
|
@@ -103,6 +127,13 @@ TASK_LIST_RERANKING = [
|
|
| 103 |
"StackOverflowDupQuestions",
|
| 104 |
]
|
| 105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
TASK_LIST_RETRIEVAL = [
|
| 107 |
"ArguAna",
|
| 108 |
"ClimateFEVER",
|
|
@@ -124,7 +155,7 @@ TASK_LIST_RETRIEVAL = [
|
|
| 124 |
TASK_LIST_RETRIEVAL_PL = [
|
| 125 |
"ArguAna-PL",
|
| 126 |
"DBPedia-PL",
|
| 127 |
-
"
|
| 128 |
"HotpotQA-PL",
|
| 129 |
"MSMARCO-PL",
|
| 130 |
"NFCorpus-PL",
|
|
@@ -135,6 +166,17 @@ TASK_LIST_RETRIEVAL_PL = [
|
|
| 135 |
"TRECCOVID-PL",
|
| 136 |
]
|
| 137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
TASK_LIST_RETRIEVAL_NORM = TASK_LIST_RETRIEVAL + [
|
| 139 |
"CQADupstackAndroidRetrieval",
|
| 140 |
"CQADupstackEnglishRetrieval",
|
|
@@ -163,13 +205,24 @@ TASK_LIST_STS = [
|
|
| 163 |
"STSBenchmark",
|
| 164 |
]
|
| 165 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
TASK_LIST_STS_NORM = [x.replace(" (en)", "").replace(" (en-en)", "") for x in TASK_LIST_STS]
|
| 167 |
|
| 168 |
-
TASK_LIST_SUMMARIZATION = [
|
| 169 |
-
"SummEval",
|
| 170 |
-
]
|
| 171 |
|
| 172 |
TASK_LIST_EN = TASK_LIST_CLASSIFICATION + TASK_LIST_CLUSTERING + TASK_LIST_PAIR_CLASSIFICATION + TASK_LIST_RERANKING + TASK_LIST_RETRIEVAL + TASK_LIST_STS + TASK_LIST_SUMMARIZATION
|
|
|
|
| 173 |
|
| 174 |
TASK_TO_METRIC = {
|
| 175 |
"BitextMining": "f1",
|
|
@@ -198,6 +251,10 @@ EXTERNAL_MODELS = [
|
|
| 198 |
"allenai-specter",
|
| 199 |
"bert-base-swedish-cased",
|
| 200 |
"bert-base-uncased",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
"contriever-base-msmarco",
|
| 202 |
"cross-en-de-roberta-sentence-transformer",
|
| 203 |
"dfm-encoder-large-v1",
|
|
@@ -220,8 +277,11 @@ EXTERNAL_MODELS = [
|
|
| 220 |
"gtr-t5-xl",
|
| 221 |
"gtr-t5-xxl",
|
| 222 |
"komninos",
|
|
|
|
| 223 |
"LASER2",
|
| 224 |
-
"LaBSE",
|
|
|
|
|
|
|
| 225 |
"msmarco-bert-co-condensor",
|
| 226 |
"multilingual-e5-base",
|
| 227 |
"multilingual-e5-large",
|
|
@@ -238,6 +298,8 @@ EXTERNAL_MODELS = [
|
|
| 238 |
"sentence-t5-xl",
|
| 239 |
"sentence-t5-xxl",
|
| 240 |
"sup-simcse-bert-base-uncased",
|
|
|
|
|
|
|
| 241 |
"text-embedding-ada-002",
|
| 242 |
"text-similarity-ada-001",
|
| 243 |
"text-similarity-babbage-001",
|
|
@@ -262,6 +324,10 @@ EXTERNAL_MODEL_TO_LINK = {
|
|
| 262 |
"all-mpnet-base-v2": "https://huggingface.co/sentence-transformers/all-mpnet-base-v2",
|
| 263 |
"bert-base-swedish-cased": "https://huggingface.co/KB/bert-base-swedish-cased",
|
| 264 |
"bert-base-uncased": "https://huggingface.co/bert-base-uncased",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
"contriever-base-msmarco": "https://huggingface.co/nthakur/contriever-base-msmarco",
|
| 266 |
"cross-en-de-roberta-sentence-transformer": "https://huggingface.co/T-Systems-onsite/cross-en-de-roberta-sentence-transformer",
|
| 267 |
"DanskBERT": "https://huggingface.co/vesteinn/DanskBERT",
|
|
@@ -284,8 +350,11 @@ EXTERNAL_MODEL_TO_LINK = {
|
|
| 284 |
"gtr-t5-xl": "https://huggingface.co/sentence-transformers/gtr-t5-xl",
|
| 285 |
"gtr-t5-xxl": "https://huggingface.co/sentence-transformers/gtr-t5-xxl",
|
| 286 |
"komninos": "https://huggingface.co/sentence-transformers/average_word_embeddings_komninos",
|
|
|
|
| 287 |
"LASER2": "https://github.com/facebookresearch/LASER",
|
| 288 |
"LaBSE": "https://huggingface.co/sentence-transformers/LaBSE",
|
|
|
|
|
|
|
| 289 |
"msmarco-bert-co-condensor": "https://huggingface.co/sentence-transformers/msmarco-bert-co-condensor",
|
| 290 |
"multilingual-e5-base": "https://huggingface.co/intfloat/multilingual-e5-base",
|
| 291 |
"multilingual-e5-large": "https://huggingface.co/intfloat/multilingual-e5-large",
|
|
@@ -302,6 +371,8 @@ EXTERNAL_MODEL_TO_LINK = {
|
|
| 302 |
"sentence-t5-xl": "https://huggingface.co/sentence-transformers/sentence-t5-xl",
|
| 303 |
"sentence-t5-xxl": "https://huggingface.co/sentence-transformers/sentence-t5-xxl",
|
| 304 |
"sup-simcse-bert-base-uncased": "https://huggingface.co/princeton-nlp/sup-simcse-bert-base-uncased",
|
|
|
|
|
|
|
| 305 |
"text-embedding-ada-002": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
| 306 |
"text-similarity-ada-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
| 307 |
"text-similarity-babbage-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
|
@@ -326,6 +397,10 @@ EXTERNAL_MODEL_TO_DIM = {
|
|
| 326 |
"allenai-specter": 768,
|
| 327 |
"bert-base-swedish-cased": 768,
|
| 328 |
"bert-base-uncased": 768,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 329 |
"contriever-base-msmarco": 768,
|
| 330 |
"cross-en-de-roberta-sentence-transformer": 768,
|
| 331 |
"DanskBERT": 768,
|
|
@@ -337,6 +412,7 @@ EXTERNAL_MODEL_TO_DIM = {
|
|
| 337 |
"e5-large": 1024,
|
| 338 |
"electra-small-nordic": 256,
|
| 339 |
"electra-small-swedish-cased-discriminator": 256,
|
|
|
|
| 340 |
"LASER2": 1024,
|
| 341 |
"LaBSE": 768,
|
| 342 |
"gbert-base": 768,
|
|
@@ -350,6 +426,8 @@ EXTERNAL_MODEL_TO_DIM = {
|
|
| 350 |
"gtr-t5-xl": 768,
|
| 351 |
"gtr-t5-xxl": 768,
|
| 352 |
"komninos": 300,
|
|
|
|
|
|
|
| 353 |
"msmarco-bert-co-condensor": 768,
|
| 354 |
"multilingual-e5-base": 768,
|
| 355 |
"multilingual-e5-small": 384,
|
|
@@ -366,8 +444,8 @@ EXTERNAL_MODEL_TO_DIM = {
|
|
| 366 |
"sentence-t5-xl": 768,
|
| 367 |
"sentence-t5-xxl": 768,
|
| 368 |
"sup-simcse-bert-base-uncased": 768,
|
| 369 |
-
"
|
| 370 |
-
"
|
| 371 |
"text-embedding-ada-002": 1536,
|
| 372 |
"text-similarity-ada-001": 1024,
|
| 373 |
"text-similarity-babbage-001": 2048,
|
|
@@ -379,11 +457,12 @@ EXTERNAL_MODEL_TO_DIM = {
|
|
| 379 |
"text-search-babbage-001": 2048,
|
| 380 |
"text-search-curie-001": 4096,
|
| 381 |
"text-search-davinci-001": 12288,
|
|
|
|
|
|
|
| 382 |
"xlm-roberta-base": 768,
|
| 383 |
"xlm-roberta-large": 1024,
|
| 384 |
}
|
| 385 |
|
| 386 |
-
|
| 387 |
EXTERNAL_MODEL_TO_SEQLEN = {
|
| 388 |
"all-MiniLM-L12-v2": 512,
|
| 389 |
"all-MiniLM-L6-v2": 512,
|
|
@@ -391,6 +470,10 @@ EXTERNAL_MODEL_TO_SEQLEN = {
|
|
| 391 |
"allenai-specter": 512,
|
| 392 |
"bert-base-swedish-cased": 512,
|
| 393 |
"bert-base-uncased": 512,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 394 |
"contriever-base-msmarco": 512,
|
| 395 |
"cross-en-de-roberta-sentence-transformer": 514,
|
| 396 |
"DanskBERT": 514,
|
|
@@ -413,8 +496,11 @@ EXTERNAL_MODEL_TO_SEQLEN = {
|
|
| 413 |
"gtr-t5-xl": 512,
|
| 414 |
"gtr-t5-xxl": 512,
|
| 415 |
"komninos": "N/A",
|
|
|
|
| 416 |
"LASER2": "N/A",
|
| 417 |
-
"LaBSE": 512,
|
|
|
|
|
|
|
| 418 |
"msmarco-bert-co-condensor": 512,
|
| 419 |
"multilingual-e5-base": 514,
|
| 420 |
"multilingual-e5-large": 514,
|
|
@@ -431,6 +517,8 @@ EXTERNAL_MODEL_TO_SEQLEN = {
|
|
| 431 |
"sentence-t5-xl": 512,
|
| 432 |
"sentence-t5-xxl": 512,
|
| 433 |
"sup-simcse-bert-base-uncased": 512,
|
|
|
|
|
|
|
| 434 |
"text-embedding-ada-002": 8191,
|
| 435 |
"text-similarity-ada-001": 2046,
|
| 436 |
"text-similarity-babbage-001": 2046,
|
|
@@ -455,6 +543,10 @@ EXTERNAL_MODEL_TO_SIZE = {
|
|
| 455 |
"all-mpnet-base-v2": 0.44,
|
| 456 |
"bert-base-uncased": 0.44,
|
| 457 |
"bert-base-swedish-cased": 0.50,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 458 |
"cross-en-de-roberta-sentence-transformer": 1.11,
|
| 459 |
"contriever-base-msmarco": 0.44,
|
| 460 |
"DanskBERT": 0.50,
|
|
@@ -477,8 +569,11 @@ EXTERNAL_MODEL_TO_SIZE = {
|
|
| 477 |
"gtr-t5-xl": 2.48,
|
| 478 |
"gtr-t5-xxl": 9.73,
|
| 479 |
"komninos": 0.27,
|
|
|
|
| 480 |
"LASER2": 0.17,
|
| 481 |
"LaBSE": 1.88,
|
|
|
|
|
|
|
| 482 |
"msmarco-bert-co-condensor": 0.44,
|
| 483 |
"multilingual-e5-base": 1.11,
|
| 484 |
"multilingual-e5-small": 0.47,
|
|
@@ -495,6 +590,8 @@ EXTERNAL_MODEL_TO_SIZE = {
|
|
| 495 |
"sentence-t5-xl": 2.48,
|
| 496 |
"sentence-t5-xxl": 9.73,
|
| 497 |
"sup-simcse-bert-base-uncased": 0.44,
|
|
|
|
|
|
|
| 498 |
"unsup-simcse-bert-base-uncased": 0.44,
|
| 499 |
"use-cmlm-multilingual": 1.89,
|
| 500 |
"xlm-roberta-base": 1.12,
|
|
@@ -523,9 +620,9 @@ MODELS_TO_SKIP = {
|
|
| 523 |
"newsrx/instructor-xl",
|
| 524 |
"dmlls/all-mpnet-base-v2",
|
| 525 |
"cgldo/semanticClone",
|
|
|
|
| 526 |
}
|
| 527 |
|
| 528 |
-
|
| 529 |
EXTERNAL_MODEL_RESULTS = {model: {k: {v: []} for k, v in TASK_TO_METRIC.items()} for model in EXTERNAL_MODELS}
|
| 530 |
|
| 531 |
def add_lang(examples):
|
|
@@ -537,26 +634,29 @@ def add_lang(examples):
|
|
| 537 |
|
| 538 |
def add_task(examples):
|
| 539 |
# Could be added to the dataset loading script instead
|
| 540 |
-
if examples["mteb_dataset_name"] in TASK_LIST_CLASSIFICATION_NORM + TASK_LIST_CLASSIFICATION_DA + TASK_LIST_CLASSIFICATION_SV + TASK_LIST_CLASSIFICATION_NB:
|
| 541 |
examples["mteb_task"] = "Classification"
|
| 542 |
-
elif examples["mteb_dataset_name"] in TASK_LIST_CLUSTERING + TASK_LIST_CLUSTERING_DE:
|
| 543 |
examples["mteb_task"] = "Clustering"
|
| 544 |
-
elif examples["mteb_dataset_name"] in TASK_LIST_PAIR_CLASSIFICATION:
|
| 545 |
examples["mteb_task"] = "PairClassification"
|
| 546 |
-
elif examples["mteb_dataset_name"] in TASK_LIST_RERANKING:
|
| 547 |
examples["mteb_task"] = "Reranking"
|
| 548 |
-
elif examples["mteb_dataset_name"] in TASK_LIST_RETRIEVAL_NORM + TASK_LIST_RETRIEVAL_PL:
|
| 549 |
examples["mteb_task"] = "Retrieval"
|
| 550 |
-
elif examples["mteb_dataset_name"] in TASK_LIST_STS_NORM:
|
| 551 |
examples["mteb_task"] = "STS"
|
| 552 |
elif examples["mteb_dataset_name"] in TASK_LIST_SUMMARIZATION:
|
| 553 |
examples["mteb_task"] = "Summarization"
|
| 554 |
-
|
| 555 |
examples["mteb_task"] = "BitextMining"
|
|
|
|
|
|
|
|
|
|
| 556 |
return examples
|
| 557 |
|
| 558 |
for model in EXTERNAL_MODELS:
|
| 559 |
-
ds = load_dataset("mteb/results", model)
|
| 560 |
# For local debugging:
|
| 561 |
#, download_mode='force_redownload', verification_mode="no_checks")
|
| 562 |
ds = ds.map(add_lang)
|
|
@@ -609,7 +709,6 @@ def make_datasets_clickable(df):
|
|
| 609 |
columns={f'BornholmBitextMining': '<a target="_blank" style="text-decoration: underline" href="{link}">BornholmBitextMining</a>',})
|
| 610 |
return df
|
| 611 |
|
| 612 |
-
|
| 613 |
def add_rank(df):
|
| 614 |
cols_to_rank = [col for col in df.columns if col not in ["Model", "Model Size (GB)", "Embedding Dimensions", "Sequence Length"]]
|
| 615 |
if len(cols_to_rank) == 1:
|
|
@@ -694,7 +793,7 @@ def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_
|
|
| 694 |
return df
|
| 695 |
|
| 696 |
def get_mteb_average():
|
| 697 |
-
global DATA_OVERALL, DATA_CLASSIFICATION_EN, DATA_CLUSTERING, DATA_PAIR_CLASSIFICATION, DATA_RERANKING, DATA_RETRIEVAL, DATA_STS_EN, DATA_SUMMARIZATION
|
| 698 |
DATA_OVERALL = get_mteb_data(
|
| 699 |
tasks=[
|
| 700 |
"Classification",
|
|
@@ -705,7 +804,7 @@ def get_mteb_average():
|
|
| 705 |
"STS",
|
| 706 |
"Summarization",
|
| 707 |
],
|
| 708 |
-
|
| 709 |
fillna=False,
|
| 710 |
add_emb_dim=True,
|
| 711 |
rank=False,
|
|
@@ -728,36 +827,134 @@ def get_mteb_average():
|
|
| 728 |
DATA_OVERALL = DATA_OVERALL.round(2)
|
| 729 |
|
| 730 |
DATA_CLASSIFICATION_EN = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_CLASSIFICATION])
|
|
|
|
|
|
|
|
|
|
| 731 |
DATA_CLUSTERING = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_CLUSTERING])
|
|
|
|
|
|
|
| 732 |
DATA_PAIR_CLASSIFICATION = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_PAIR_CLASSIFICATION])
|
|
|
|
|
|
|
| 733 |
DATA_RERANKING = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_RERANKING])
|
|
|
|
|
|
|
| 734 |
DATA_RETRIEVAL = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_RETRIEVAL])
|
|
|
|
|
|
|
| 735 |
DATA_STS_EN = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_STS])
|
|
|
|
|
|
|
| 736 |
DATA_SUMMARIZATION = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_SUMMARIZATION])
|
|
|
|
| 737 |
|
| 738 |
# Fill NaN after averaging
|
| 739 |
DATA_OVERALL.fillna("", inplace=True)
|
| 740 |
|
| 741 |
DATA_OVERALL = DATA_OVERALL[["Rank", "Model", "Model Size (GB)", "Embedding Dimensions", "Sequence Length", f"Average ({len(TASK_LIST_EN)} datasets)", f"Classification Average ({len(TASK_LIST_CLASSIFICATION)} datasets)", f"Clustering Average ({len(TASK_LIST_CLUSTERING)} datasets)", f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION)} datasets)", f"Reranking Average ({len(TASK_LIST_RERANKING)} datasets)", f"Retrieval Average ({len(TASK_LIST_RETRIEVAL)} datasets)", f"STS Average ({len(TASK_LIST_STS)} datasets)", f"Summarization Average ({len(TASK_LIST_SUMMARIZATION)} dataset)"]]
|
|
|
|
| 742 |
|
| 743 |
return DATA_OVERALL
|
| 744 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 745 |
get_mteb_average()
|
|
|
|
| 746 |
DATA_BITEXT_MINING = get_mteb_data(["BitextMining"], [], TASK_LIST_BITEXT_MINING)
|
| 747 |
DATA_BITEXT_MINING_OTHER = get_mteb_data(["BitextMining"], [], TASK_LIST_BITEXT_MINING_OTHER)
|
| 748 |
DATA_CLASSIFICATION_DA = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_DA)
|
| 749 |
DATA_CLASSIFICATION_NB = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_NB)
|
| 750 |
DATA_CLASSIFICATION_SV = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_SV)
|
| 751 |
DATA_CLASSIFICATION_OTHER = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_OTHER)
|
| 752 |
-
|
| 753 |
DATA_RETRIEVAL_PL = get_mteb_data(["Retrieval"], [], TASK_LIST_RETRIEVAL_PL)
|
| 754 |
-
|
| 755 |
|
| 756 |
# Exact, add all non-nan integer values for every dataset
|
| 757 |
NUM_SCORES = 0
|
| 758 |
DATASETS = []
|
|
|
|
| 759 |
# LANGUAGES = []
|
| 760 |
-
for d in [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 761 |
# NUM_SCORES += d.iloc[:, 1:].apply(lambda x: sum([1 for y in x if isinstance(y, float) and not np.isnan(y)]), axis=1).sum()
|
| 762 |
cols_to_ignore = 3 if "Average" in d.columns else 2
|
| 763 |
# Count number of scores including only non-nan floats & excluding the rank column
|
|
@@ -765,9 +962,11 @@ for d in [DATA_BITEXT_MINING, DATA_BITEXT_MINING_OTHER, DATA_CLASSIFICATION_EN,
|
|
| 765 |
# Exclude rank & model name column (first two); Do not count different language versions as different datasets
|
| 766 |
DATASETS += [i.split(" ")[0] for i in d.columns[cols_to_ignore:]]
|
| 767 |
# LANGUAGES += [i.split(" ")[-1] for i in d.columns[cols_to_ignore:]]
|
|
|
|
| 768 |
|
| 769 |
NUM_DATASETS = len(set(DATASETS))
|
| 770 |
# NUM_LANGUAGES = len(set(LANGUAGES))
|
|
|
|
| 771 |
|
| 772 |
block = gr.Blocks()
|
| 773 |
with block:
|
|
@@ -777,32 +976,52 @@ with block:
|
|
| 777 |
- **Total Datasets**: {NUM_DATASETS}
|
| 778 |
- **Total Languages**: 113
|
| 779 |
- **Total Scores**: {NUM_SCORES}
|
| 780 |
-
- **Total Models**: {
|
| 781 |
""")
|
| 782 |
with gr.Tabs():
|
| 783 |
with gr.TabItem("Overall"):
|
| 784 |
-
with gr.
|
| 785 |
-
gr.
|
| 786 |
-
|
| 787 |
-
|
| 788 |
-
|
| 789 |
-
|
| 790 |
-
|
| 791 |
-
|
| 792 |
-
|
| 793 |
-
|
| 794 |
-
|
| 795 |
-
|
| 796 |
-
|
| 797 |
-
|
| 798 |
-
|
| 799 |
-
|
| 800 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 801 |
with gr.TabItem("Bitext Mining"):
|
| 802 |
with gr.TabItem("English-X"):
|
| 803 |
with gr.Row():
|
| 804 |
gr.Markdown("""
|
| 805 |
-
**Bitext Mining Leaderboard 🎌**
|
| 806 |
|
| 807 |
- **Metric:** [F1](https://huggingface.co/spaces/evaluate-metric/f1)
|
| 808 |
- **Languages:** 117 (Pairs of: English & other language)
|
|
@@ -814,11 +1033,11 @@ with block:
|
|
| 814 |
type="pandas",
|
| 815 |
)
|
| 816 |
with gr.Row():
|
| 817 |
-
|
| 818 |
task_bitext_mining = gr.Variable(value=["BitextMining"])
|
| 819 |
lang_bitext_mining = gr.Variable(value=[])
|
| 820 |
datasets_bitext_mining = gr.Variable(value=TASK_LIST_BITEXT_MINING)
|
| 821 |
-
|
| 822 |
get_mteb_data,
|
| 823 |
inputs=[task_bitext_mining, lang_bitext_mining, datasets_bitext_mining],
|
| 824 |
outputs=data_bitext_mining,
|
|
@@ -839,11 +1058,11 @@ with block:
|
|
| 839 |
type="pandas",
|
| 840 |
)
|
| 841 |
with gr.Row():
|
| 842 |
-
|
| 843 |
task_bitext_mining_da = gr.Variable(value=["BitextMining"])
|
| 844 |
lang_bitext_mining_da = gr.Variable(value=[])
|
| 845 |
datasets_bitext_mining_da = gr.Variable(value=TASK_LIST_BITEXT_MINING_OTHER)
|
| 846 |
-
|
| 847 |
get_mteb_data,
|
| 848 |
inputs=[
|
| 849 |
task_bitext_mining_da,
|
|
@@ -856,7 +1075,7 @@ with block:
|
|
| 856 |
with gr.TabItem("English"):
|
| 857 |
with gr.Row():
|
| 858 |
gr.Markdown("""
|
| 859 |
-
**Classification Leaderboard ❤️**
|
| 860 |
|
| 861 |
- **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
|
| 862 |
- **Languages:** English
|
|
@@ -879,6 +1098,35 @@ with block:
|
|
| 879 |
],
|
| 880 |
outputs=data_classification_en,
|
| 881 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 882 |
with gr.TabItem("Danish"):
|
| 883 |
with gr.Row():
|
| 884 |
gr.Markdown("""
|
|
@@ -981,11 +1229,11 @@ with block:
|
|
| 981 |
type="pandas",
|
| 982 |
)
|
| 983 |
with gr.Row():
|
| 984 |
-
|
| 985 |
task_classification = gr.Variable(value=["Classification"])
|
| 986 |
lang_classification = gr.Variable(value=[])
|
| 987 |
datasets_classification = gr.Variable(value=TASK_LIST_CLASSIFICATION_OTHER)
|
| 988 |
-
|
| 989 |
get_mteb_data,
|
| 990 |
inputs=[
|
| 991 |
task_classification,
|
|
@@ -1010,15 +1258,40 @@ with block:
|
|
| 1010 |
type="pandas",
|
| 1011 |
)
|
| 1012 |
with gr.Row():
|
| 1013 |
-
|
| 1014 |
task_clustering = gr.Variable(value=["Clustering"])
|
| 1015 |
lang_clustering = gr.Variable(value=[])
|
| 1016 |
datasets_clustering = gr.Variable(value=TASK_LIST_CLUSTERING)
|
| 1017 |
-
|
| 1018 |
get_mteb_data,
|
| 1019 |
inputs=[task_clustering, lang_clustering, datasets_clustering],
|
| 1020 |
outputs=data_clustering,
|
| 1021 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1022 |
with gr.TabItem("German"):
|
| 1023 |
with gr.Row():
|
| 1024 |
gr.Markdown("""
|
|
@@ -1030,68 +1303,137 @@ with block:
|
|
| 1030 |
""")
|
| 1031 |
with gr.Row():
|
| 1032 |
data_clustering_de = gr.components.Dataframe(
|
| 1033 |
-
|
| 1034 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
| 1035 |
type="pandas",
|
| 1036 |
)
|
| 1037 |
with gr.Row():
|
| 1038 |
-
|
| 1039 |
task_clustering_de = gr.Variable(value=["Clustering"])
|
| 1040 |
lang_clustering_de = gr.Variable(value=[])
|
| 1041 |
datasets_clustering_de = gr.Variable(value=TASK_LIST_CLUSTERING_DE)
|
| 1042 |
-
|
| 1043 |
get_mteb_data,
|
| 1044 |
inputs=[task_clustering_de, lang_clustering_de, datasets_clustering_de],
|
| 1045 |
outputs=data_clustering_de,
|
| 1046 |
)
|
| 1047 |
with gr.TabItem("Pair Classification"):
|
| 1048 |
-
with gr.
|
| 1049 |
-
gr.
|
| 1050 |
-
|
| 1051 |
-
|
| 1052 |
-
|
| 1053 |
-
|
| 1054 |
-
|
| 1055 |
-
|
| 1056 |
-
|
| 1057 |
-
|
| 1058 |
-
|
| 1059 |
-
|
| 1060 |
-
|
| 1061 |
-
|
| 1062 |
-
|
| 1063 |
-
|
| 1064 |
-
|
| 1065 |
-
|
| 1066 |
-
|
| 1067 |
-
|
| 1068 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1069 |
with gr.TabItem("Reranking"):
|
| 1070 |
-
with gr.
|
| 1071 |
-
gr.
|
| 1072 |
-
|
| 1073 |
-
|
| 1074 |
-
|
| 1075 |
-
|
| 1076 |
-
|
| 1077 |
-
|
| 1078 |
-
|
| 1079 |
-
|
| 1080 |
-
|
| 1081 |
-
|
| 1082 |
-
|
| 1083 |
-
|
| 1084 |
-
|
| 1085 |
-
|
| 1086 |
-
|
| 1087 |
-
|
| 1088 |
-
|
| 1089 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1090 |
with gr.TabItem("Retrieval"):
|
| 1091 |
with gr.TabItem("English"):
|
| 1092 |
with gr.Row():
|
| 1093 |
gr.Markdown("""
|
| 1094 |
-
**Retrieval Leaderboard
|
| 1095 |
|
| 1096 |
- **Metric:** Normalized Discounted Cumulative Gain @ k (ndcg_at_10)
|
| 1097 |
- **Languages:** English
|
|
@@ -1104,10 +1446,44 @@ with block:
|
|
| 1104 |
type="pandas",
|
| 1105 |
)
|
| 1106 |
with gr.Row():
|
| 1107 |
-
|
| 1108 |
task_retrieval = gr.Variable(value=["Retrieval"])
|
| 1109 |
-
|
| 1110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1111 |
)
|
| 1112 |
with gr.TabItem("Polish"):
|
| 1113 |
with gr.Row():
|
|
@@ -1126,11 +1502,11 @@ with block:
|
|
| 1126 |
type="pandas",
|
| 1127 |
)
|
| 1128 |
with gr.Row():
|
| 1129 |
-
|
| 1130 |
task_retrieval_pl = gr.Variable(value=["Retrieval"])
|
| 1131 |
lang_retrieval_pl = gr.Variable(value=[])
|
| 1132 |
datasets_retrieval_pl = gr.Variable(value=TASK_LIST_RETRIEVAL_PL)
|
| 1133 |
-
|
| 1134 |
get_mteb_data,
|
| 1135 |
inputs=[task_retrieval_pl, lang_retrieval_pl, datasets_retrieval_pl],
|
| 1136 |
outputs=data_retrieval_pl
|
|
@@ -1139,7 +1515,7 @@ with block:
|
|
| 1139 |
with gr.TabItem("English"):
|
| 1140 |
with gr.Row():
|
| 1141 |
gr.Markdown("""
|
| 1142 |
-
**STS Leaderboard 🤖**
|
| 1143 |
|
| 1144 |
- **Metric:** Spearman correlation based on cosine similarity
|
| 1145 |
- **Languages:** English
|
|
@@ -1153,30 +1529,62 @@ with block:
|
|
| 1153 |
with gr.Row():
|
| 1154 |
data_run_sts_en = gr.Button("Refresh")
|
| 1155 |
task_sts_en = gr.Variable(value=["STS"])
|
| 1156 |
-
lang_sts_en = gr.Variable(value=[
|
|
|
|
| 1157 |
data_run_sts_en.click(
|
| 1158 |
get_mteb_data,
|
| 1159 |
-
inputs=[task_sts_en, lang_sts_en],
|
| 1160 |
outputs=data_sts_en,
|
| 1161 |
)
|
| 1162 |
-
with gr.TabItem("
|
| 1163 |
with gr.Row():
|
| 1164 |
gr.Markdown("""
|
| 1165 |
-
**STS
|
| 1166 |
|
| 1167 |
- **Metric:** Spearman correlation based on cosine similarity
|
| 1168 |
-
- **Languages:**
|
|
|
|
| 1169 |
""")
|
| 1170 |
with gr.Row():
|
| 1171 |
-
|
| 1172 |
-
|
| 1173 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
| 1174 |
type="pandas",
|
| 1175 |
)
|
| 1176 |
with gr.Row():
|
| 1177 |
-
|
| 1178 |
-
|
| 1179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1180 |
with gr.TabItem("Summarization"):
|
| 1181 |
with gr.Row():
|
| 1182 |
gr.Markdown("""
|
|
|
|
| 66 |
"SweRecClassification",
|
| 67 |
]
|
| 68 |
|
| 69 |
+
TASK_LIST_CLASSIFICATION_ZH = [
|
| 70 |
+
"AmazonReviewsClassification (zh)",
|
| 71 |
+
"IFlyTek",
|
| 72 |
+
"JDReview",
|
| 73 |
+
"MassiveIntentClassification (zh-CN)",
|
| 74 |
+
"MassiveScenarioClassification (zh-CN)",
|
| 75 |
+
"MultilingualSentiment",
|
| 76 |
+
"OnlineShopping",
|
| 77 |
+
"TNews",
|
| 78 |
+
"Waimai",
|
| 79 |
+
]
|
| 80 |
+
|
| 81 |
+
TASK_LIST_CLASSIFICATION_OTHER = ['AmazonCounterfactualClassification (de)', 'AmazonCounterfactualClassification (ja)', 'AmazonReviewsClassification (de)', 'AmazonReviewsClassification (es)', 'AmazonReviewsClassification (fr)', 'AmazonReviewsClassification (ja)', 'AmazonReviewsClassification (zh)', 'MTOPDomainClassification (de)', 'MTOPDomainClassification (es)', 'MTOPDomainClassification (fr)', 'MTOPDomainClassification (hi)', 'MTOPDomainClassification (th)', 'MTOPIntentClassification (de)', 'MTOPIntentClassification (es)', 'MTOPIntentClassification (fr)', 'MTOPIntentClassification (hi)', 'MTOPIntentClassification (th)', 'MassiveIntentClassification (af)', 'MassiveIntentClassification (am)', 'MassiveIntentClassification (ar)', 'MassiveIntentClassification (az)', 'MassiveIntentClassification (bn)', 'MassiveIntentClassification (cy)', 'MassiveIntentClassification (de)', 'MassiveIntentClassification (el)', 'MassiveIntentClassification (es)', 'MassiveIntentClassification (fa)', 'MassiveIntentClassification (fi)', 'MassiveIntentClassification (fr)', 'MassiveIntentClassification (he)', 'MassiveIntentClassification (hi)', 'MassiveIntentClassification (hu)', 'MassiveIntentClassification (hy)', 'MassiveIntentClassification (id)', 'MassiveIntentClassification (is)', 'MassiveIntentClassification (it)', 'MassiveIntentClassification (ja)', 'MassiveIntentClassification (jv)', 'MassiveIntentClassification (ka)', 'MassiveIntentClassification (km)', 'MassiveIntentClassification (kn)', 'MassiveIntentClassification (ko)', 'MassiveIntentClassification (lv)', 'MassiveIntentClassification (ml)', 'MassiveIntentClassification (mn)', 'MassiveIntentClassification (ms)', 'MassiveIntentClassification (my)', 'MassiveIntentClassification (nl)', 'MassiveIntentClassification (pl)', 'MassiveIntentClassification (pt)', 'MassiveIntentClassification (ro)', 'MassiveIntentClassification (ru)', 'MassiveIntentClassification (sl)', 'MassiveIntentClassification (sq)', 'MassiveIntentClassification (sw)', 'MassiveIntentClassification (ta)', 'MassiveIntentClassification (te)', 'MassiveIntentClassification (th)', 'MassiveIntentClassification (tl)', 'MassiveIntentClassification (tr)', 'MassiveIntentClassification (ur)', 'MassiveIntentClassification (vi)', 'MassiveIntentClassification (zh-TW)', 'MassiveScenarioClassification (af)', 'MassiveScenarioClassification (am)', 'MassiveScenarioClassification (ar)', 'MassiveScenarioClassification (az)', 'MassiveScenarioClassification (bn)', 'MassiveScenarioClassification (cy)', 'MassiveScenarioClassification (de)', 'MassiveScenarioClassification (el)', 'MassiveScenarioClassification (es)', 'MassiveScenarioClassification (fa)', 'MassiveScenarioClassification (fi)', 'MassiveScenarioClassification (fr)', 'MassiveScenarioClassification (he)', 'MassiveScenarioClassification (hi)', 'MassiveScenarioClassification (hu)', 'MassiveScenarioClassification (hy)', 'MassiveScenarioClassification (id)', 'MassiveScenarioClassification (is)', 'MassiveScenarioClassification (it)', 'MassiveScenarioClassification (ja)', 'MassiveScenarioClassification (jv)', 'MassiveScenarioClassification (ka)', 'MassiveScenarioClassification (km)', 'MassiveScenarioClassification (kn)', 'MassiveScenarioClassification (ko)', 'MassiveScenarioClassification (lv)', 'MassiveScenarioClassification (ml)', 'MassiveScenarioClassification (mn)', 'MassiveScenarioClassification (ms)', 'MassiveScenarioClassification (my)', 'MassiveScenarioClassification (nl)', 'MassiveScenarioClassification (pl)', 'MassiveScenarioClassification (pt)', 'MassiveScenarioClassification (ro)', 'MassiveScenarioClassification (ru)', 'MassiveScenarioClassification (sl)', 'MassiveScenarioClassification (sq)', 'MassiveScenarioClassification (sw)', 'MassiveScenarioClassification (ta)', 'MassiveScenarioClassification (te)', 'MassiveScenarioClassification (th)', 'MassiveScenarioClassification (tl)', 'MassiveScenarioClassification (tr)', 'MassiveScenarioClassification (ur)', 'MassiveScenarioClassification (vi)', 'MassiveScenarioClassification (zh-TW)']
|
| 82 |
|
| 83 |
TASK_LIST_CLUSTERING = [
|
| 84 |
"ArxivClusteringP2P",
|
|
|
|
| 102 |
"TenKGnadClusteringS2S",
|
| 103 |
]
|
| 104 |
|
| 105 |
+
TASK_LIST_CLUSTERING_ZH = [
|
| 106 |
+
"CLSClusteringP2P",
|
| 107 |
+
"CLSClusteringS2S",
|
| 108 |
+
"ThuNewsClusteringP2P",
|
| 109 |
+
"ThuNewsClusteringS2S",
|
| 110 |
+
]
|
| 111 |
+
|
| 112 |
TASK_LIST_PAIR_CLASSIFICATION = [
|
| 113 |
"SprintDuplicateQuestions",
|
| 114 |
"TwitterSemEval2015",
|
| 115 |
"TwitterURLCorpus",
|
| 116 |
]
|
| 117 |
|
| 118 |
+
TASK_LIST_PAIR_CLASSIFICATION_ZH = [
|
| 119 |
+
"Cmnli",
|
| 120 |
+
"Ocnli",
|
| 121 |
+
]
|
| 122 |
+
|
| 123 |
TASK_LIST_RERANKING = [
|
| 124 |
"AskUbuntuDupQuestions",
|
| 125 |
"MindSmallReranking",
|
|
|
|
| 127 |
"StackOverflowDupQuestions",
|
| 128 |
]
|
| 129 |
|
| 130 |
+
TASK_LIST_RERANKING_ZH = [
|
| 131 |
+
"CMedQAv1",
|
| 132 |
+
"CMedQAv2",
|
| 133 |
+
"MmarcoReranking",
|
| 134 |
+
"T2Reranking",
|
| 135 |
+
]
|
| 136 |
+
|
| 137 |
TASK_LIST_RETRIEVAL = [
|
| 138 |
"ArguAna",
|
| 139 |
"ClimateFEVER",
|
|
|
|
| 155 |
TASK_LIST_RETRIEVAL_PL = [
|
| 156 |
"ArguAna-PL",
|
| 157 |
"DBPedia-PL",
|
| 158 |
+
"FiQA-PL",
|
| 159 |
"HotpotQA-PL",
|
| 160 |
"MSMARCO-PL",
|
| 161 |
"NFCorpus-PL",
|
|
|
|
| 166 |
"TRECCOVID-PL",
|
| 167 |
]
|
| 168 |
|
| 169 |
+
TASK_LIST_RETRIEVAL_ZH = [
|
| 170 |
+
"CmedqaRetrieval",
|
| 171 |
+
"CovidRetrieval",
|
| 172 |
+
"DuRetrieval",
|
| 173 |
+
"EcomRetrieval",
|
| 174 |
+
"MedicalRetrieval",
|
| 175 |
+
"MMarcoRetrieval",
|
| 176 |
+
"T2Retrieval",
|
| 177 |
+
"VideoRetrieval",
|
| 178 |
+
]
|
| 179 |
+
|
| 180 |
TASK_LIST_RETRIEVAL_NORM = TASK_LIST_RETRIEVAL + [
|
| 181 |
"CQADupstackAndroidRetrieval",
|
| 182 |
"CQADupstackEnglishRetrieval",
|
|
|
|
| 205 |
"STSBenchmark",
|
| 206 |
]
|
| 207 |
|
| 208 |
+
TASK_LIST_STS_ZH = [
|
| 209 |
+
"AFQMC",
|
| 210 |
+
"ATEC",
|
| 211 |
+
"BQ",
|
| 212 |
+
"LCQMC",
|
| 213 |
+
"PAWSX",
|
| 214 |
+
"QBQTC",
|
| 215 |
+
"STS22 (zh)",
|
| 216 |
+
"STSB",
|
| 217 |
+
]
|
| 218 |
+
|
| 219 |
+
TASK_LIST_STS_OTHER = ["STS17 (ar-ar)", "STS17 (en-ar)", "STS17 (en-de)", "STS17 (en-tr)", "STS17 (es-en)", "STS17 (es-es)", "STS17 (fr-en)", "STS17 (it-en)", "STS17 (ko-ko)", "STS17 (nl-en)", "STS22 (ar)", "STS22 (de)", "STS22 (de-en)", "STS22 (de-fr)", "STS22 (de-pl)", "STS22 (es)", "STS22 (es-en)", "STS22 (es-it)", "STS22 (fr)", "STS22 (fr-pl)", "STS22 (it)", "STS22 (pl)", "STS22 (pl-en)", "STS22 (ru)", "STS22 (tr)", "STS22 (zh-en)", "STSBenchmark",]
|
| 220 |
TASK_LIST_STS_NORM = [x.replace(" (en)", "").replace(" (en-en)", "") for x in TASK_LIST_STS]
|
| 221 |
|
| 222 |
+
TASK_LIST_SUMMARIZATION = ["SummEval",]
|
|
|
|
|
|
|
| 223 |
|
| 224 |
TASK_LIST_EN = TASK_LIST_CLASSIFICATION + TASK_LIST_CLUSTERING + TASK_LIST_PAIR_CLASSIFICATION + TASK_LIST_RERANKING + TASK_LIST_RETRIEVAL + TASK_LIST_STS + TASK_LIST_SUMMARIZATION
|
| 225 |
+
TASK_LIST_ZH = TASK_LIST_CLASSIFICATION_ZH + TASK_LIST_CLUSTERING_ZH + TASK_LIST_PAIR_CLASSIFICATION_ZH + TASK_LIST_RERANKING_ZH + TASK_LIST_RETRIEVAL_ZH + TASK_LIST_STS_ZH
|
| 226 |
|
| 227 |
TASK_TO_METRIC = {
|
| 228 |
"BitextMining": "f1",
|
|
|
|
| 251 |
"allenai-specter",
|
| 252 |
"bert-base-swedish-cased",
|
| 253 |
"bert-base-uncased",
|
| 254 |
+
"bge-base-zh",
|
| 255 |
+
"bge-large-zh",
|
| 256 |
+
"bge-large-zh-noinstruct",
|
| 257 |
+
"bge-small-zh",
|
| 258 |
"contriever-base-msmarco",
|
| 259 |
"cross-en-de-roberta-sentence-transformer",
|
| 260 |
"dfm-encoder-large-v1",
|
|
|
|
| 277 |
"gtr-t5-xl",
|
| 278 |
"gtr-t5-xxl",
|
| 279 |
"komninos",
|
| 280 |
+
"luotuo-bert-medium",
|
| 281 |
"LASER2",
|
| 282 |
+
"LaBSE",
|
| 283 |
+
"m3e-base",
|
| 284 |
+
"m3e-large",
|
| 285 |
"msmarco-bert-co-condensor",
|
| 286 |
"multilingual-e5-base",
|
| 287 |
"multilingual-e5-large",
|
|
|
|
| 298 |
"sentence-t5-xl",
|
| 299 |
"sentence-t5-xxl",
|
| 300 |
"sup-simcse-bert-base-uncased",
|
| 301 |
+
"text2vec-base-chinese",
|
| 302 |
+
"text2vec-large-chinese",
|
| 303 |
"text-embedding-ada-002",
|
| 304 |
"text-similarity-ada-001",
|
| 305 |
"text-similarity-babbage-001",
|
|
|
|
| 324 |
"all-mpnet-base-v2": "https://huggingface.co/sentence-transformers/all-mpnet-base-v2",
|
| 325 |
"bert-base-swedish-cased": "https://huggingface.co/KB/bert-base-swedish-cased",
|
| 326 |
"bert-base-uncased": "https://huggingface.co/bert-base-uncased",
|
| 327 |
+
"bge-base-zh": "https://huggingface.co/BAAI/bge-base-zh",
|
| 328 |
+
"bge-large-zh": "https://huggingface.co/BAAI/bge-large-zh",
|
| 329 |
+
"bge-large-zh-noinstruct": "https://huggingface.co/BAAI/bge-large-zh-noinstruct",
|
| 330 |
+
"bge-small-zh": "https://huggingface.co/BAAI/bge-small-zh",
|
| 331 |
"contriever-base-msmarco": "https://huggingface.co/nthakur/contriever-base-msmarco",
|
| 332 |
"cross-en-de-roberta-sentence-transformer": "https://huggingface.co/T-Systems-onsite/cross-en-de-roberta-sentence-transformer",
|
| 333 |
"DanskBERT": "https://huggingface.co/vesteinn/DanskBERT",
|
|
|
|
| 350 |
"gtr-t5-xl": "https://huggingface.co/sentence-transformers/gtr-t5-xl",
|
| 351 |
"gtr-t5-xxl": "https://huggingface.co/sentence-transformers/gtr-t5-xxl",
|
| 352 |
"komninos": "https://huggingface.co/sentence-transformers/average_word_embeddings_komninos",
|
| 353 |
+
"luotuo-bert-medium": "https://huggingface.co/silk-road/luotuo-bert-medium",
|
| 354 |
"LASER2": "https://github.com/facebookresearch/LASER",
|
| 355 |
"LaBSE": "https://huggingface.co/sentence-transformers/LaBSE",
|
| 356 |
+
"m3e-base": "https://huggingface.co/moka-ai/m3e-base",
|
| 357 |
+
"m3e-large": "https://huggingface.co/moka-ai/m3e-large",
|
| 358 |
"msmarco-bert-co-condensor": "https://huggingface.co/sentence-transformers/msmarco-bert-co-condensor",
|
| 359 |
"multilingual-e5-base": "https://huggingface.co/intfloat/multilingual-e5-base",
|
| 360 |
"multilingual-e5-large": "https://huggingface.co/intfloat/multilingual-e5-large",
|
|
|
|
| 371 |
"sentence-t5-xl": "https://huggingface.co/sentence-transformers/sentence-t5-xl",
|
| 372 |
"sentence-t5-xxl": "https://huggingface.co/sentence-transformers/sentence-t5-xxl",
|
| 373 |
"sup-simcse-bert-base-uncased": "https://huggingface.co/princeton-nlp/sup-simcse-bert-base-uncased",
|
| 374 |
+
"text2vec-base-chinese": "https://huggingface.co/shibing624/text2vec-base-chinese",
|
| 375 |
+
"text2vec-large-chinese": "https://huggingface.co/GanymedeNil/text2vec-large-chinese",
|
| 376 |
"text-embedding-ada-002": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
| 377 |
"text-similarity-ada-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
| 378 |
"text-similarity-babbage-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
|
|
|
| 397 |
"allenai-specter": 768,
|
| 398 |
"bert-base-swedish-cased": 768,
|
| 399 |
"bert-base-uncased": 768,
|
| 400 |
+
"bge-base-zh": 768,
|
| 401 |
+
"bge-large-zh": 1024,
|
| 402 |
+
"bge-large-zh-noinstruct": 1024,
|
| 403 |
+
"bge-small-zh": 512,
|
| 404 |
"contriever-base-msmarco": 768,
|
| 405 |
"cross-en-de-roberta-sentence-transformer": 768,
|
| 406 |
"DanskBERT": 768,
|
|
|
|
| 412 |
"e5-large": 1024,
|
| 413 |
"electra-small-nordic": 256,
|
| 414 |
"electra-small-swedish-cased-discriminator": 256,
|
| 415 |
+
"luotuo-bert-medium": 768,
|
| 416 |
"LASER2": 1024,
|
| 417 |
"LaBSE": 768,
|
| 418 |
"gbert-base": 768,
|
|
|
|
| 426 |
"gtr-t5-xl": 768,
|
| 427 |
"gtr-t5-xxl": 768,
|
| 428 |
"komninos": 300,
|
| 429 |
+
"m3e-base": 768,
|
| 430 |
+
"m3e-large": 768,
|
| 431 |
"msmarco-bert-co-condensor": 768,
|
| 432 |
"multilingual-e5-base": 768,
|
| 433 |
"multilingual-e5-small": 384,
|
|
|
|
| 444 |
"sentence-t5-xl": 768,
|
| 445 |
"sentence-t5-xxl": 768,
|
| 446 |
"sup-simcse-bert-base-uncased": 768,
|
| 447 |
+
"text2vec-base-chinese": 768,
|
| 448 |
+
"text2vec-large-chinese": 1024,
|
| 449 |
"text-embedding-ada-002": 1536,
|
| 450 |
"text-similarity-ada-001": 1024,
|
| 451 |
"text-similarity-babbage-001": 2048,
|
|
|
|
| 457 |
"text-search-babbage-001": 2048,
|
| 458 |
"text-search-curie-001": 4096,
|
| 459 |
"text-search-davinci-001": 12288,
|
| 460 |
+
"unsup-simcse-bert-base-uncased": 768,
|
| 461 |
+
"use-cmlm-multilingual": 768,
|
| 462 |
"xlm-roberta-base": 768,
|
| 463 |
"xlm-roberta-large": 1024,
|
| 464 |
}
|
| 465 |
|
|
|
|
| 466 |
EXTERNAL_MODEL_TO_SEQLEN = {
|
| 467 |
"all-MiniLM-L12-v2": 512,
|
| 468 |
"all-MiniLM-L6-v2": 512,
|
|
|
|
| 470 |
"allenai-specter": 512,
|
| 471 |
"bert-base-swedish-cased": 512,
|
| 472 |
"bert-base-uncased": 512,
|
| 473 |
+
"bge-base-zh": 512,
|
| 474 |
+
"bge-large-zh": 512,
|
| 475 |
+
"bge-large-zh-noinstruct": 512,
|
| 476 |
+
"bge-small-zh": 512,
|
| 477 |
"contriever-base-msmarco": 512,
|
| 478 |
"cross-en-de-roberta-sentence-transformer": 514,
|
| 479 |
"DanskBERT": 514,
|
|
|
|
| 496 |
"gtr-t5-xl": 512,
|
| 497 |
"gtr-t5-xxl": 512,
|
| 498 |
"komninos": "N/A",
|
| 499 |
+
"luotuo-bert-medium": 512,
|
| 500 |
"LASER2": "N/A",
|
| 501 |
+
"LaBSE": 512,
|
| 502 |
+
"m3e-base": 512,
|
| 503 |
+
"m3e-large": 512,
|
| 504 |
"msmarco-bert-co-condensor": 512,
|
| 505 |
"multilingual-e5-base": 514,
|
| 506 |
"multilingual-e5-large": 514,
|
|
|
|
| 517 |
"sentence-t5-xl": 512,
|
| 518 |
"sentence-t5-xxl": 512,
|
| 519 |
"sup-simcse-bert-base-uncased": 512,
|
| 520 |
+
"text2vec-base-chinese": 512,
|
| 521 |
+
"text2vec-large-chinese": 512,
|
| 522 |
"text-embedding-ada-002": 8191,
|
| 523 |
"text-similarity-ada-001": 2046,
|
| 524 |
"text-similarity-babbage-001": 2046,
|
|
|
|
| 543 |
"all-mpnet-base-v2": 0.44,
|
| 544 |
"bert-base-uncased": 0.44,
|
| 545 |
"bert-base-swedish-cased": 0.50,
|
| 546 |
+
"bge-base-zh": 0.41,
|
| 547 |
+
"bge-large-zh": 1.30,
|
| 548 |
+
"bge-large-zh-noinstruct": 1.30,
|
| 549 |
+
"bge-small-zh": 0.10,
|
| 550 |
"cross-en-de-roberta-sentence-transformer": 1.11,
|
| 551 |
"contriever-base-msmarco": 0.44,
|
| 552 |
"DanskBERT": 0.50,
|
|
|
|
| 569 |
"gtr-t5-xl": 2.48,
|
| 570 |
"gtr-t5-xxl": 9.73,
|
| 571 |
"komninos": 0.27,
|
| 572 |
+
"luotuo-bert-medium": 1.31,
|
| 573 |
"LASER2": 0.17,
|
| 574 |
"LaBSE": 1.88,
|
| 575 |
+
"m3e-base": 0.41,
|
| 576 |
+
"m3e-large": 0.41,
|
| 577 |
"msmarco-bert-co-condensor": 0.44,
|
| 578 |
"multilingual-e5-base": 1.11,
|
| 579 |
"multilingual-e5-small": 0.47,
|
|
|
|
| 590 |
"sentence-t5-xl": 2.48,
|
| 591 |
"sentence-t5-xxl": 9.73,
|
| 592 |
"sup-simcse-bert-base-uncased": 0.44,
|
| 593 |
+
"text2vec-base-chinese": 0.41,
|
| 594 |
+
"text2vec-large-chinese": 1.30,
|
| 595 |
"unsup-simcse-bert-base-uncased": 0.44,
|
| 596 |
"use-cmlm-multilingual": 1.89,
|
| 597 |
"xlm-roberta-base": 1.12,
|
|
|
|
| 620 |
"newsrx/instructor-xl",
|
| 621 |
"dmlls/all-mpnet-base-v2",
|
| 622 |
"cgldo/semanticClone",
|
| 623 |
+
"Malmuk1/e5-large-v2_Sharded",
|
| 624 |
}
|
| 625 |
|
|
|
|
| 626 |
EXTERNAL_MODEL_RESULTS = {model: {k: {v: []} for k, v in TASK_TO_METRIC.items()} for model in EXTERNAL_MODELS}
|
| 627 |
|
| 628 |
def add_lang(examples):
|
|
|
|
| 634 |
|
| 635 |
def add_task(examples):
|
| 636 |
# Could be added to the dataset loading script instead
|
| 637 |
+
if examples["mteb_dataset_name"] in TASK_LIST_CLASSIFICATION_NORM + TASK_LIST_CLASSIFICATION_DA + TASK_LIST_CLASSIFICATION_SV + TASK_LIST_CLASSIFICATION_NB + TASK_LIST_CLASSIFICATION_ZH:
|
| 638 |
examples["mteb_task"] = "Classification"
|
| 639 |
+
elif examples["mteb_dataset_name"] in TASK_LIST_CLUSTERING + TASK_LIST_CLUSTERING_DE + TASK_LIST_CLUSTERING_ZH:
|
| 640 |
examples["mteb_task"] = "Clustering"
|
| 641 |
+
elif examples["mteb_dataset_name"] in TASK_LIST_PAIR_CLASSIFICATION + TASK_LIST_PAIR_CLASSIFICATION_ZH:
|
| 642 |
examples["mteb_task"] = "PairClassification"
|
| 643 |
+
elif examples["mteb_dataset_name"] in TASK_LIST_RERANKING + TASK_LIST_RERANKING_ZH:
|
| 644 |
examples["mteb_task"] = "Reranking"
|
| 645 |
+
elif examples["mteb_dataset_name"] in TASK_LIST_RETRIEVAL_NORM + TASK_LIST_RETRIEVAL_PL + TASK_LIST_RETRIEVAL_ZH:
|
| 646 |
examples["mteb_task"] = "Retrieval"
|
| 647 |
+
elif examples["mteb_dataset_name"] in TASK_LIST_STS_NORM + TASK_LIST_STS_ZH:
|
| 648 |
examples["mteb_task"] = "STS"
|
| 649 |
elif examples["mteb_dataset_name"] in TASK_LIST_SUMMARIZATION:
|
| 650 |
examples["mteb_task"] = "Summarization"
|
| 651 |
+
elif examples["mteb_dataset_name"] in [x.split(" ")[0] for x in TASK_LIST_BITEXT_MINING + TASK_LIST_BITEXT_MINING_OTHER]:
|
| 652 |
examples["mteb_task"] = "BitextMining"
|
| 653 |
+
else:
|
| 654 |
+
print("WARNING: Task not found for dataset", examples["mteb_dataset_name"])
|
| 655 |
+
examples["mteb_task"] = "Unknown"
|
| 656 |
return examples
|
| 657 |
|
| 658 |
for model in EXTERNAL_MODELS:
|
| 659 |
+
ds = load_dataset("mteb/results", model)
|
| 660 |
# For local debugging:
|
| 661 |
#, download_mode='force_redownload', verification_mode="no_checks")
|
| 662 |
ds = ds.map(add_lang)
|
|
|
|
| 709 |
columns={f'BornholmBitextMining': '<a target="_blank" style="text-decoration: underline" href="{link}">BornholmBitextMining</a>',})
|
| 710 |
return df
|
| 711 |
|
|
|
|
| 712 |
def add_rank(df):
|
| 713 |
cols_to_rank = [col for col in df.columns if col not in ["Model", "Model Size (GB)", "Embedding Dimensions", "Sequence Length"]]
|
| 714 |
if len(cols_to_rank) == 1:
|
|
|
|
| 793 |
return df
|
| 794 |
|
| 795 |
def get_mteb_average():
|
| 796 |
+
global DATA_OVERALL, DATA_CLASSIFICATION_EN, DATA_CLUSTERING, DATA_PAIR_CLASSIFICATION, DATA_RERANKING, DATA_RETRIEVAL, DATA_STS_EN, DATA_SUMMARIZATION
|
| 797 |
DATA_OVERALL = get_mteb_data(
|
| 798 |
tasks=[
|
| 799 |
"Classification",
|
|
|
|
| 804 |
"STS",
|
| 805 |
"Summarization",
|
| 806 |
],
|
| 807 |
+
datasets=TASK_LIST_CLASSIFICATION + TASK_LIST_CLUSTERING + TASK_LIST_PAIR_CLASSIFICATION + TASK_LIST_RERANKING + TASK_LIST_RETRIEVAL + TASK_LIST_STS + TASK_LIST_SUMMARIZATION,
|
| 808 |
fillna=False,
|
| 809 |
add_emb_dim=True,
|
| 810 |
rank=False,
|
|
|
|
| 827 |
DATA_OVERALL = DATA_OVERALL.round(2)
|
| 828 |
|
| 829 |
DATA_CLASSIFICATION_EN = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_CLASSIFICATION])
|
| 830 |
+
# Only keep rows with at least one score in addition to the "Model" & rank column
|
| 831 |
+
DATA_CLASSIFICATION_EN = DATA_CLASSIFICATION_EN[DATA_CLASSIFICATION_EN.iloc[:, 2:].ne("").any(axis=1)]
|
| 832 |
+
|
| 833 |
DATA_CLUSTERING = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_CLUSTERING])
|
| 834 |
+
DATA_CLUSTERING = DATA_CLUSTERING[DATA_CLUSTERING.iloc[:, 2:].ne("").any(axis=1)]
|
| 835 |
+
|
| 836 |
DATA_PAIR_CLASSIFICATION = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_PAIR_CLASSIFICATION])
|
| 837 |
+
DATA_PAIR_CLASSIFICATION = DATA_PAIR_CLASSIFICATION[DATA_PAIR_CLASSIFICATION.iloc[:, 2:].ne("").any(axis=1)]
|
| 838 |
+
|
| 839 |
DATA_RERANKING = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_RERANKING])
|
| 840 |
+
DATA_RERANKING = DATA_RERANKING[DATA_RERANKING.iloc[:, 2:].ne("").any(axis=1)]
|
| 841 |
+
|
| 842 |
DATA_RETRIEVAL = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_RETRIEVAL])
|
| 843 |
+
DATA_RETRIEVAL = DATA_RETRIEVAL[DATA_RETRIEVAL.iloc[:, 2:].ne("").any(axis=1)]
|
| 844 |
+
|
| 845 |
DATA_STS_EN = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_STS])
|
| 846 |
+
DATA_STS_EN = DATA_STS_EN[DATA_STS_EN.iloc[:, 2:].ne("").any(axis=1)]
|
| 847 |
+
|
| 848 |
DATA_SUMMARIZATION = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_SUMMARIZATION])
|
| 849 |
+
DATA_SUMMARIZATION = DATA_SUMMARIZATION[DATA_SUMMARIZATION.iloc[:, 1:].ne("").any(axis=1)]
|
| 850 |
|
| 851 |
# Fill NaN after averaging
|
| 852 |
DATA_OVERALL.fillna("", inplace=True)
|
| 853 |
|
| 854 |
DATA_OVERALL = DATA_OVERALL[["Rank", "Model", "Model Size (GB)", "Embedding Dimensions", "Sequence Length", f"Average ({len(TASK_LIST_EN)} datasets)", f"Classification Average ({len(TASK_LIST_CLASSIFICATION)} datasets)", f"Clustering Average ({len(TASK_LIST_CLUSTERING)} datasets)", f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION)} datasets)", f"Reranking Average ({len(TASK_LIST_RERANKING)} datasets)", f"Retrieval Average ({len(TASK_LIST_RETRIEVAL)} datasets)", f"STS Average ({len(TASK_LIST_STS)} datasets)", f"Summarization Average ({len(TASK_LIST_SUMMARIZATION)} dataset)"]]
|
| 855 |
+
DATA_OVERALL = DATA_OVERALL[DATA_OVERALL.iloc[:, 5:].ne("").any(axis=1)]
|
| 856 |
|
| 857 |
return DATA_OVERALL
|
| 858 |
|
| 859 |
+
def get_mteb_average_zh():
|
| 860 |
+
global DATA_OVERALL_ZH, DATA_CLASSIFICATION_ZH, DATA_CLUSTERING_ZH, DATA_PAIR_CLASSIFICATION_ZH, DATA_RERANKING_ZH, DATA_RETRIEVAL_ZH, DATA_STS_ZH
|
| 861 |
+
DATA_OVERALL_ZH = get_mteb_data(
|
| 862 |
+
tasks=[
|
| 863 |
+
"Classification",
|
| 864 |
+
"Clustering",
|
| 865 |
+
"PairClassification",
|
| 866 |
+
"Reranking",
|
| 867 |
+
"Retrieval",
|
| 868 |
+
"STS",
|
| 869 |
+
],
|
| 870 |
+
datasets=TASK_LIST_CLASSIFICATION_ZH + TASK_LIST_CLUSTERING_ZH + TASK_LIST_PAIR_CLASSIFICATION_ZH + TASK_LIST_RERANKING_ZH + TASK_LIST_RETRIEVAL_ZH + TASK_LIST_STS_ZH,
|
| 871 |
+
fillna=False,
|
| 872 |
+
add_emb_dim=True,
|
| 873 |
+
rank=False,
|
| 874 |
+
)
|
| 875 |
+
# Debugging:
|
| 876 |
+
# DATA_OVERALL_ZH.to_csv("overall.csv")
|
| 877 |
+
|
| 878 |
+
DATA_OVERALL_ZH.insert(1, f"Average ({len(TASK_LIST_ZH)} datasets)", DATA_OVERALL_ZH[TASK_LIST_ZH].mean(axis=1, skipna=False))
|
| 879 |
+
DATA_OVERALL_ZH.insert(2, f"Classification Average ({len(TASK_LIST_CLASSIFICATION_ZH)} datasets)", DATA_OVERALL_ZH[TASK_LIST_CLASSIFICATION_ZH].mean(axis=1, skipna=False))
|
| 880 |
+
DATA_OVERALL_ZH.insert(3, f"Clustering Average ({len(TASK_LIST_CLUSTERING_ZH)} datasets)", DATA_OVERALL_ZH[TASK_LIST_CLUSTERING_ZH].mean(axis=1, skipna=False))
|
| 881 |
+
DATA_OVERALL_ZH.insert(4, f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION_ZH)} datasets)", DATA_OVERALL_ZH[TASK_LIST_PAIR_CLASSIFICATION_ZH].mean(axis=1, skipna=False))
|
| 882 |
+
DATA_OVERALL_ZH.insert(5, f"Reranking Average ({len(TASK_LIST_RERANKING_ZH)} datasets)", DATA_OVERALL_ZH[TASK_LIST_RERANKING_ZH].mean(axis=1, skipna=False))
|
| 883 |
+
DATA_OVERALL_ZH.insert(6, f"Retrieval Average ({len(TASK_LIST_RETRIEVAL_ZH)} datasets)", DATA_OVERALL_ZH[TASK_LIST_RETRIEVAL_ZH].mean(axis=1, skipna=False))
|
| 884 |
+
DATA_OVERALL_ZH.insert(7, f"STS Average ({len(TASK_LIST_STS_ZH)} datasets)", DATA_OVERALL_ZH[TASK_LIST_STS_ZH].mean(axis=1, skipna=False))
|
| 885 |
+
DATA_OVERALL_ZH.sort_values(f"Average ({len(TASK_LIST_ZH)} datasets)", ascending=False, inplace=True)
|
| 886 |
+
# Start ranking from 1
|
| 887 |
+
DATA_OVERALL_ZH.insert(0, "Rank", list(range(1, len(DATA_OVERALL_ZH) + 1)))
|
| 888 |
+
|
| 889 |
+
DATA_OVERALL_ZH = DATA_OVERALL_ZH.round(2)
|
| 890 |
+
|
| 891 |
+
DATA_CLASSIFICATION_ZH = add_rank(DATA_OVERALL_ZH[["Model"] + TASK_LIST_CLASSIFICATION_ZH])
|
| 892 |
+
# Only keep rows with at least one score in addition to the "Model" & rank column
|
| 893 |
+
DATA_CLASSIFICATION_ZH = DATA_CLASSIFICATION_ZH[DATA_CLASSIFICATION_ZH.iloc[:, 2:].ne("").any(axis=1)]
|
| 894 |
+
|
| 895 |
+
DATA_CLUSTERING_ZH = add_rank(DATA_OVERALL_ZH[["Model"] + TASK_LIST_CLUSTERING_ZH])
|
| 896 |
+
DATA_CLUSTERING_ZH = DATA_CLUSTERING_ZH[DATA_CLUSTERING_ZH.iloc[:, 2:].ne("").any(axis=1)]
|
| 897 |
+
|
| 898 |
+
DATA_PAIR_CLASSIFICATION_ZH = add_rank(DATA_OVERALL_ZH[["Model"] + TASK_LIST_PAIR_CLASSIFICATION_ZH])
|
| 899 |
+
DATA_PAIR_CLASSIFICATION_ZH = DATA_PAIR_CLASSIFICATION_ZH[DATA_PAIR_CLASSIFICATION_ZH.iloc[:, 2:].ne("").any(axis=1)]
|
| 900 |
+
|
| 901 |
+
DATA_RERANKING_ZH = add_rank(DATA_OVERALL_ZH[["Model"] + TASK_LIST_RERANKING_ZH])
|
| 902 |
+
DATA_RERANKING_ZH = DATA_RERANKING_ZH[DATA_RERANKING_ZH.iloc[:, 2:].ne("").any(axis=1)]
|
| 903 |
+
|
| 904 |
+
DATA_RETRIEVAL_ZH = add_rank(DATA_OVERALL_ZH[["Model"] + TASK_LIST_RETRIEVAL_ZH])
|
| 905 |
+
DATA_RETRIEVAL_ZH = DATA_RETRIEVAL_ZH[DATA_RETRIEVAL_ZH.iloc[:, 2:].ne("").any(axis=1)]
|
| 906 |
+
|
| 907 |
+
DATA_STS_ZH = add_rank(DATA_OVERALL_ZH[["Model"] + TASK_LIST_STS_ZH])
|
| 908 |
+
DATA_STS_ZH = DATA_STS_ZH[DATA_STS_ZH.iloc[:, 2:].ne("").any(axis=1)]
|
| 909 |
+
|
| 910 |
+
# Fill NaN after averaging
|
| 911 |
+
DATA_OVERALL_ZH.fillna("", inplace=True)
|
| 912 |
+
|
| 913 |
+
DATA_OVERALL_ZH = DATA_OVERALL_ZH[["Rank", "Model", "Model Size (GB)", "Embedding Dimensions", "Sequence Length", f"Average ({len(TASK_LIST_ZH)} datasets)", f"Classification Average ({len(TASK_LIST_CLASSIFICATION_ZH)} datasets)", f"Clustering Average ({len(TASK_LIST_CLUSTERING_ZH)} datasets)", f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION_ZH)} datasets)", f"Reranking Average ({len(TASK_LIST_RERANKING_ZH)} datasets)", f"Retrieval Average ({len(TASK_LIST_RETRIEVAL_ZH)} datasets)", f"STS Average ({len(TASK_LIST_STS_ZH)} datasets)"]]
|
| 914 |
+
DATA_OVERALL_ZH = DATA_OVERALL_ZH[DATA_OVERALL_ZH.iloc[:, 5:].ne("").any(axis=1)]
|
| 915 |
+
|
| 916 |
+
return DATA_OVERALL_ZH
|
| 917 |
+
|
| 918 |
get_mteb_average()
|
| 919 |
+
get_mteb_average_zh()
|
| 920 |
DATA_BITEXT_MINING = get_mteb_data(["BitextMining"], [], TASK_LIST_BITEXT_MINING)
|
| 921 |
DATA_BITEXT_MINING_OTHER = get_mteb_data(["BitextMining"], [], TASK_LIST_BITEXT_MINING_OTHER)
|
| 922 |
DATA_CLASSIFICATION_DA = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_DA)
|
| 923 |
DATA_CLASSIFICATION_NB = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_NB)
|
| 924 |
DATA_CLASSIFICATION_SV = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_SV)
|
| 925 |
DATA_CLASSIFICATION_OTHER = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_OTHER)
|
| 926 |
+
DATA_CLUSTERING_DE = get_mteb_data(["Clustering"], [], TASK_LIST_CLUSTERING_DE)
|
| 927 |
DATA_RETRIEVAL_PL = get_mteb_data(["Retrieval"], [], TASK_LIST_RETRIEVAL_PL)
|
| 928 |
+
DATA_STS_OTHER = get_mteb_data(["STS"], [], TASK_LIST_STS_OTHER)
|
| 929 |
|
| 930 |
# Exact, add all non-nan integer values for every dataset
|
| 931 |
NUM_SCORES = 0
|
| 932 |
DATASETS = []
|
| 933 |
+
MODELS = []
|
| 934 |
# LANGUAGES = []
|
| 935 |
+
for d in [
|
| 936 |
+
DATA_BITEXT_MINING,
|
| 937 |
+
DATA_BITEXT_MINING_OTHER,
|
| 938 |
+
DATA_CLASSIFICATION_EN,
|
| 939 |
+
DATA_CLASSIFICATION_DA,
|
| 940 |
+
DATA_CLASSIFICATION_NB,
|
| 941 |
+
DATA_CLASSIFICATION_SV,
|
| 942 |
+
DATA_CLASSIFICATION_ZH,
|
| 943 |
+
DATA_CLASSIFICATION_OTHER,
|
| 944 |
+
DATA_CLUSTERING,
|
| 945 |
+
DATA_CLUSTERING_DE,
|
| 946 |
+
DATA_CLUSTERING_ZH,
|
| 947 |
+
DATA_PAIR_CLASSIFICATION,
|
| 948 |
+
DATA_PAIR_CLASSIFICATION_ZH,
|
| 949 |
+
DATA_RERANKING,
|
| 950 |
+
DATA_RERANKING_ZH,
|
| 951 |
+
DATA_RETRIEVAL,
|
| 952 |
+
DATA_RETRIEVAL_ZH,
|
| 953 |
+
DATA_STS_EN,
|
| 954 |
+
DATA_STS_ZH,
|
| 955 |
+
DATA_STS_OTHER,
|
| 956 |
+
DATA_SUMMARIZATION,
|
| 957 |
+
]:
|
| 958 |
# NUM_SCORES += d.iloc[:, 1:].apply(lambda x: sum([1 for y in x if isinstance(y, float) and not np.isnan(y)]), axis=1).sum()
|
| 959 |
cols_to_ignore = 3 if "Average" in d.columns else 2
|
| 960 |
# Count number of scores including only non-nan floats & excluding the rank column
|
|
|
|
| 962 |
# Exclude rank & model name column (first two); Do not count different language versions as different datasets
|
| 963 |
DATASETS += [i.split(" ")[0] for i in d.columns[cols_to_ignore:]]
|
| 964 |
# LANGUAGES += [i.split(" ")[-1] for i in d.columns[cols_to_ignore:]]
|
| 965 |
+
MODELS += d["Model"].tolist()
|
| 966 |
|
| 967 |
NUM_DATASETS = len(set(DATASETS))
|
| 968 |
# NUM_LANGUAGES = len(set(LANGUAGES))
|
| 969 |
+
NUM_MODELS = len(set(MODELS))
|
| 970 |
|
| 971 |
block = gr.Blocks()
|
| 972 |
with block:
|
|
|
|
| 976 |
- **Total Datasets**: {NUM_DATASETS}
|
| 977 |
- **Total Languages**: 113
|
| 978 |
- **Total Scores**: {NUM_SCORES}
|
| 979 |
+
- **Total Models**: {NUM_MODELS}
|
| 980 |
""")
|
| 981 |
with gr.Tabs():
|
| 982 |
with gr.TabItem("Overall"):
|
| 983 |
+
with gr.TabItem("English"):
|
| 984 |
+
with gr.Row():
|
| 985 |
+
gr.Markdown("""
|
| 986 |
+
**Overall MTEB English leaderboard 🔮**
|
| 987 |
+
|
| 988 |
+
- **Metric:** Various, refer to task tabs
|
| 989 |
+
- **Languages:** English
|
| 990 |
+
""")
|
| 991 |
+
with gr.Row():
|
| 992 |
+
data_overall = gr.components.Dataframe(
|
| 993 |
+
DATA_OVERALL,
|
| 994 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_OVERALL.columns),
|
| 995 |
+
type="pandas",
|
| 996 |
+
wrap=True,
|
| 997 |
+
)
|
| 998 |
+
with gr.Row():
|
| 999 |
+
data_run_overall = gr.Button("Refresh")
|
| 1000 |
+
data_run_overall.click(get_mteb_average, inputs=None, outputs=data_overall)
|
| 1001 |
+
with gr.TabItem("Chinese"):
|
| 1002 |
+
with gr.Row():
|
| 1003 |
+
gr.Markdown("""
|
| 1004 |
+
**Overall MTEB Chinese leaderboard (C-MTEB) 🔮🇨🇳**
|
| 1005 |
+
|
| 1006 |
+
- **Metric:** Various, refer to task tabs
|
| 1007 |
+
- **Languages:** Chinese
|
| 1008 |
+
- **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
|
| 1009 |
+
""")
|
| 1010 |
+
with gr.Row():
|
| 1011 |
+
data_overall_zh = gr.components.Dataframe(
|
| 1012 |
+
DATA_OVERALL_ZH,
|
| 1013 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_OVERALL_ZH.columns),
|
| 1014 |
+
type="pandas",
|
| 1015 |
+
wrap=True,
|
| 1016 |
+
)
|
| 1017 |
+
with gr.Row():
|
| 1018 |
+
data_run_overall_zh = gr.Button("Refresh")
|
| 1019 |
+
data_run_overall_zh.click(get_mteb_average_zh, inputs=None, outputs=data_overall_zh)
|
| 1020 |
with gr.TabItem("Bitext Mining"):
|
| 1021 |
with gr.TabItem("English-X"):
|
| 1022 |
with gr.Row():
|
| 1023 |
gr.Markdown("""
|
| 1024 |
+
**Bitext Mining English-X Leaderboard 🎌**
|
| 1025 |
|
| 1026 |
- **Metric:** [F1](https://huggingface.co/spaces/evaluate-metric/f1)
|
| 1027 |
- **Languages:** 117 (Pairs of: English & other language)
|
|
|
|
| 1033 |
type="pandas",
|
| 1034 |
)
|
| 1035 |
with gr.Row():
|
| 1036 |
+
data_run_bitext_mining = gr.Button("Refresh")
|
| 1037 |
task_bitext_mining = gr.Variable(value=["BitextMining"])
|
| 1038 |
lang_bitext_mining = gr.Variable(value=[])
|
| 1039 |
datasets_bitext_mining = gr.Variable(value=TASK_LIST_BITEXT_MINING)
|
| 1040 |
+
data_run_bitext_mining.click(
|
| 1041 |
get_mteb_data,
|
| 1042 |
inputs=[task_bitext_mining, lang_bitext_mining, datasets_bitext_mining],
|
| 1043 |
outputs=data_bitext_mining,
|
|
|
|
| 1058 |
type="pandas",
|
| 1059 |
)
|
| 1060 |
with gr.Row():
|
| 1061 |
+
data_run_bitext_mining_da = gr.Button("Refresh")
|
| 1062 |
task_bitext_mining_da = gr.Variable(value=["BitextMining"])
|
| 1063 |
lang_bitext_mining_da = gr.Variable(value=[])
|
| 1064 |
datasets_bitext_mining_da = gr.Variable(value=TASK_LIST_BITEXT_MINING_OTHER)
|
| 1065 |
+
data_run_bitext_mining_da.click(
|
| 1066 |
get_mteb_data,
|
| 1067 |
inputs=[
|
| 1068 |
task_bitext_mining_da,
|
|
|
|
| 1075 |
with gr.TabItem("English"):
|
| 1076 |
with gr.Row():
|
| 1077 |
gr.Markdown("""
|
| 1078 |
+
**Classification English Leaderboard ❤️**
|
| 1079 |
|
| 1080 |
- **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
|
| 1081 |
- **Languages:** English
|
|
|
|
| 1098 |
],
|
| 1099 |
outputs=data_classification_en,
|
| 1100 |
)
|
| 1101 |
+
with gr.TabItem("Chinese"):
|
| 1102 |
+
with gr.Row():
|
| 1103 |
+
gr.Markdown("""
|
| 1104 |
+
**Classification Chinese Leaderboard 🧡🇨🇳**
|
| 1105 |
+
|
| 1106 |
+
- **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
|
| 1107 |
+
- **Languages:** Chinese
|
| 1108 |
+
- **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
|
| 1109 |
+
""")
|
| 1110 |
+
with gr.Row():
|
| 1111 |
+
data_classification_zh = gr.components.Dataframe(
|
| 1112 |
+
DATA_CLASSIFICATION_ZH,
|
| 1113 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_ZH.columns),
|
| 1114 |
+
type="pandas",
|
| 1115 |
+
)
|
| 1116 |
+
with gr.Row():
|
| 1117 |
+
data_run_classification_zh = gr.Button("Refresh")
|
| 1118 |
+
task_classification_zh = gr.Variable(value=["Classification"])
|
| 1119 |
+
lang_classification_zh = gr.Variable([])
|
| 1120 |
+
datasets_classification_zh = gr.Variable(value=TASK_LIST_CLASSIFICATION_ZH)
|
| 1121 |
+
data_run_classification_zh.click(
|
| 1122 |
+
get_mteb_data,
|
| 1123 |
+
inputs=[
|
| 1124 |
+
task_classification_zh,
|
| 1125 |
+
lang_classification_zh,
|
| 1126 |
+
datasets_classification_zh,
|
| 1127 |
+
],
|
| 1128 |
+
outputs=data_classification_zh,
|
| 1129 |
+
)
|
| 1130 |
with gr.TabItem("Danish"):
|
| 1131 |
with gr.Row():
|
| 1132 |
gr.Markdown("""
|
|
|
|
| 1229 |
type="pandas",
|
| 1230 |
)
|
| 1231 |
with gr.Row():
|
| 1232 |
+
data_run_classification = gr.Button("Refresh")
|
| 1233 |
task_classification = gr.Variable(value=["Classification"])
|
| 1234 |
lang_classification = gr.Variable(value=[])
|
| 1235 |
datasets_classification = gr.Variable(value=TASK_LIST_CLASSIFICATION_OTHER)
|
| 1236 |
+
data_run_classification.click(
|
| 1237 |
get_mteb_data,
|
| 1238 |
inputs=[
|
| 1239 |
task_classification,
|
|
|
|
| 1258 |
type="pandas",
|
| 1259 |
)
|
| 1260 |
with gr.Row():
|
| 1261 |
+
data_run_clustering_en = gr.Button("Refresh")
|
| 1262 |
task_clustering = gr.Variable(value=["Clustering"])
|
| 1263 |
lang_clustering = gr.Variable(value=[])
|
| 1264 |
datasets_clustering = gr.Variable(value=TASK_LIST_CLUSTERING)
|
| 1265 |
+
data_run_clustering_en.click(
|
| 1266 |
get_mteb_data,
|
| 1267 |
inputs=[task_clustering, lang_clustering, datasets_clustering],
|
| 1268 |
outputs=data_clustering,
|
| 1269 |
)
|
| 1270 |
+
with gr.TabItem("Chinese"):
|
| 1271 |
+
with gr.Row():
|
| 1272 |
+
gr.Markdown("""
|
| 1273 |
+
**Clustering Chinese Leaderboard ✨🇨🇳**
|
| 1274 |
+
|
| 1275 |
+
- **Metric:** Validity Measure (v_measure)
|
| 1276 |
+
- **Languages:** Chinese
|
| 1277 |
+
- **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
|
| 1278 |
+
""")
|
| 1279 |
+
with gr.Row():
|
| 1280 |
+
data_clustering_zh = gr.components.Dataframe(
|
| 1281 |
+
DATA_CLUSTERING_ZH,
|
| 1282 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_CLUSTERING_ZH.columns),
|
| 1283 |
+
type="pandas",
|
| 1284 |
+
)
|
| 1285 |
+
with gr.Row():
|
| 1286 |
+
data_run_clustering_zh = gr.Button("Refresh")
|
| 1287 |
+
task_clustering_zh = gr.Variable(value=["Clustering"])
|
| 1288 |
+
lang_clustering_zh = gr.Variable(value=[])
|
| 1289 |
+
datasets_clustering_zh = gr.Variable(value=TASK_LIST_CLUSTERING_ZH)
|
| 1290 |
+
data_run_clustering_zh.click(
|
| 1291 |
+
get_mteb_data,
|
| 1292 |
+
inputs=[task_clustering_zh, lang_clustering_zh, datasets_clustering_zh],
|
| 1293 |
+
outputs=data_clustering_zh,
|
| 1294 |
+
)
|
| 1295 |
with gr.TabItem("German"):
|
| 1296 |
with gr.Row():
|
| 1297 |
gr.Markdown("""
|
|
|
|
| 1303 |
""")
|
| 1304 |
with gr.Row():
|
| 1305 |
data_clustering_de = gr.components.Dataframe(
|
| 1306 |
+
DATA_CLUSTERING_DE,
|
| 1307 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_CLUSTERING_DE.columns) * 2,
|
| 1308 |
type="pandas",
|
| 1309 |
)
|
| 1310 |
with gr.Row():
|
| 1311 |
+
data_run_clustering_de = gr.Button("Refresh")
|
| 1312 |
task_clustering_de = gr.Variable(value=["Clustering"])
|
| 1313 |
lang_clustering_de = gr.Variable(value=[])
|
| 1314 |
datasets_clustering_de = gr.Variable(value=TASK_LIST_CLUSTERING_DE)
|
| 1315 |
+
data_run_clustering_de.click(
|
| 1316 |
get_mteb_data,
|
| 1317 |
inputs=[task_clustering_de, lang_clustering_de, datasets_clustering_de],
|
| 1318 |
outputs=data_clustering_de,
|
| 1319 |
)
|
| 1320 |
with gr.TabItem("Pair Classification"):
|
| 1321 |
+
with gr.TabItem("English"):
|
| 1322 |
+
with gr.Row():
|
| 1323 |
+
gr.Markdown("""
|
| 1324 |
+
**Pair Classification English Leaderboard 🎭**
|
| 1325 |
+
|
| 1326 |
+
- **Metric:** Average Precision based on Cosine Similarities (cos_sim_ap)
|
| 1327 |
+
- **Languages:** English
|
| 1328 |
+
""")
|
| 1329 |
+
with gr.Row():
|
| 1330 |
+
data_pair_classification = gr.components.Dataframe(
|
| 1331 |
+
DATA_PAIR_CLASSIFICATION,
|
| 1332 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_PAIR_CLASSIFICATION.columns),
|
| 1333 |
+
type="pandas",
|
| 1334 |
+
)
|
| 1335 |
+
with gr.Row():
|
| 1336 |
+
data_run_pair_classification = gr.Button("Refresh")
|
| 1337 |
+
task_pair_classification = gr.Variable(value=["PairClassification"])
|
| 1338 |
+
lang_pair_classification = gr.Variable(value=[])
|
| 1339 |
+
datasets_pair_classification = gr.Variable(value=TASK_LIST_PAIR_CLASSIFICATION)
|
| 1340 |
+
data_run_pair_classification.click(
|
| 1341 |
+
get_mteb_data,
|
| 1342 |
+
inputs=[
|
| 1343 |
+
task_pair_classification,
|
| 1344 |
+
lang_pair_classification,
|
| 1345 |
+
datasets_pair_classification,
|
| 1346 |
+
],
|
| 1347 |
+
outputs=data_pair_classification,
|
| 1348 |
+
)
|
| 1349 |
+
with gr.TabItem("Chinese"):
|
| 1350 |
+
with gr.Row():
|
| 1351 |
+
gr.Markdown("""
|
| 1352 |
+
**Pair Classification Chinese Leaderboard 🎭🇨🇳**
|
| 1353 |
+
|
| 1354 |
+
- **Metric:** Average Precision based on Cosine Similarities (cos_sim_ap)
|
| 1355 |
+
- **Languages:** Chinese
|
| 1356 |
+
- **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
|
| 1357 |
+
""")
|
| 1358 |
+
with gr.Row():
|
| 1359 |
+
data_pair_classification_zh = gr.components.Dataframe(
|
| 1360 |
+
DATA_PAIR_CLASSIFICATION_ZH,
|
| 1361 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_PAIR_CLASSIFICATION_ZH.columns),
|
| 1362 |
+
type="pandas",
|
| 1363 |
+
)
|
| 1364 |
+
with gr.Row():
|
| 1365 |
+
data_run = gr.Button("Refresh")
|
| 1366 |
+
task_pair_classification_zh = gr.Variable(value=["PairClassification"])
|
| 1367 |
+
lang_pair_classification_zh = gr.Variable(value=[])
|
| 1368 |
+
datasets_pair_classification_zh = gr.Variable(value=TASK_LIST_PAIR_CLASSIFICATION_ZH)
|
| 1369 |
+
data_run_classification_zh.click(
|
| 1370 |
+
get_mteb_data,
|
| 1371 |
+
inputs=[
|
| 1372 |
+
task_pair_classification_zh,
|
| 1373 |
+
lang_pair_classification_zh,
|
| 1374 |
+
datasets_pair_classification_zh,
|
| 1375 |
+
],
|
| 1376 |
+
outputs=data_pair_classification_zh,
|
| 1377 |
+
)
|
| 1378 |
with gr.TabItem("Reranking"):
|
| 1379 |
+
with gr.TabItem("English"):
|
| 1380 |
+
with gr.Row():
|
| 1381 |
+
gr.Markdown("""
|
| 1382 |
+
**Reranking English Leaderboard 🥈**
|
| 1383 |
+
|
| 1384 |
+
- **Metric:** Mean Average Precision (MAP)
|
| 1385 |
+
- **Languages:** English
|
| 1386 |
+
""")
|
| 1387 |
+
with gr.Row():
|
| 1388 |
+
data_reranking = gr.components.Dataframe(
|
| 1389 |
+
DATA_RERANKING,
|
| 1390 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_RERANKING.columns),
|
| 1391 |
+
type="pandas",
|
| 1392 |
+
)
|
| 1393 |
+
with gr.Row():
|
| 1394 |
+
data_run_reranking = gr.Button("Refresh")
|
| 1395 |
+
task_reranking = gr.Variable(value=["Reranking"])
|
| 1396 |
+
lang_reranking = gr.Variable(value=[])
|
| 1397 |
+
datasets_reranking = gr.Variable(value=TASK_LIST_RERANKING)
|
| 1398 |
+
data_run_reranking.click(
|
| 1399 |
+
get_mteb_data,
|
| 1400 |
+
inputs=[
|
| 1401 |
+
task_reranking,
|
| 1402 |
+
lang_reranking,
|
| 1403 |
+
datasets_reranking,
|
| 1404 |
+
],
|
| 1405 |
+
outputs=data_reranking
|
| 1406 |
+
)
|
| 1407 |
+
with gr.TabItem("Chinese"):
|
| 1408 |
+
with gr.Row():
|
| 1409 |
+
gr.Markdown("""
|
| 1410 |
+
**Reranking Chinese Leaderboard 🥈🇨🇳**
|
| 1411 |
+
|
| 1412 |
+
- **Metric:** Mean Average Precision (MAP)
|
| 1413 |
+
- **Languages:** Chinese
|
| 1414 |
+
- **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
|
| 1415 |
+
""")
|
| 1416 |
+
with gr.Row():
|
| 1417 |
+
data_reranking_zh = gr.components.Dataframe(
|
| 1418 |
+
DATA_RERANKING_ZH,
|
| 1419 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_RERANKING_ZH.columns),
|
| 1420 |
+
type="pandas",
|
| 1421 |
+
)
|
| 1422 |
+
with gr.Row():
|
| 1423 |
+
data_run_reranking_zh = gr.Button("Refresh")
|
| 1424 |
+
task_reranking_zh = gr.Variable(value=["Reranking"])
|
| 1425 |
+
lang_reranking_zh = gr.Variable(value=[])
|
| 1426 |
+
datasets_reranking_zh = gr.Variable(value=TASK_LIST_RERANKING_ZH)
|
| 1427 |
+
data_run_reranking_zh.click(
|
| 1428 |
+
get_mteb_data,
|
| 1429 |
+
inputs=[task_reranking_zh, lang_reranking_zh, datasets_reranking_zh],
|
| 1430 |
+
outputs=data_reranking_zh,
|
| 1431 |
+
)
|
| 1432 |
with gr.TabItem("Retrieval"):
|
| 1433 |
with gr.TabItem("English"):
|
| 1434 |
with gr.Row():
|
| 1435 |
gr.Markdown("""
|
| 1436 |
+
**Retrieval English Leaderboard 🔎**
|
| 1437 |
|
| 1438 |
- **Metric:** Normalized Discounted Cumulative Gain @ k (ndcg_at_10)
|
| 1439 |
- **Languages:** English
|
|
|
|
| 1446 |
type="pandas",
|
| 1447 |
)
|
| 1448 |
with gr.Row():
|
| 1449 |
+
data_run_retrieval = gr.Button("Refresh")
|
| 1450 |
task_retrieval = gr.Variable(value=["Retrieval"])
|
| 1451 |
+
lang_retrieval = gr.Variable(value=[])
|
| 1452 |
+
datasets_retrieval = gr.Variable(value=TASK_LIST_RETRIEVAL)
|
| 1453 |
+
data_run_retrieval.click(
|
| 1454 |
+
get_mteb_data,
|
| 1455 |
+
inputs=[
|
| 1456 |
+
task_retrieval,
|
| 1457 |
+
lang_retrieval,
|
| 1458 |
+
datasets_retrieval,
|
| 1459 |
+
],
|
| 1460 |
+
outputs=data_retrieval
|
| 1461 |
+
)
|
| 1462 |
+
with gr.TabItem("Chinese"):
|
| 1463 |
+
with gr.Row():
|
| 1464 |
+
gr.Markdown("""
|
| 1465 |
+
**Retrieval Chinese Leaderboard 🔎🇨🇳**
|
| 1466 |
+
|
| 1467 |
+
- **Metric:** Normalized Discounted Cumulative Gain @ k (ndcg_at_10)
|
| 1468 |
+
- **Languages:** Chinese
|
| 1469 |
+
- **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
|
| 1470 |
+
""")
|
| 1471 |
+
with gr.Row():
|
| 1472 |
+
data_retrieval_zh = gr.components.Dataframe(
|
| 1473 |
+
DATA_RETRIEVAL_ZH,
|
| 1474 |
+
# Add support for more columns than existing as a buffer for CQADupstack & other Retrieval tasks (e.g. MSMARCOv2)
|
| 1475 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_RETRIEVAL_ZH.columns) * 2,
|
| 1476 |
+
type="pandas",
|
| 1477 |
+
)
|
| 1478 |
+
with gr.Row():
|
| 1479 |
+
data_run_retrieval_zh = gr.Button("Refresh")
|
| 1480 |
+
task_retrieval_zh = gr.Variable(value=["Retrieval"])
|
| 1481 |
+
lang_retrieval_zh = gr.Variable(value=[])
|
| 1482 |
+
datasets_retrieval_zh = gr.Variable(value=TASK_LIST_RETRIEVAL_ZH)
|
| 1483 |
+
data_run_retrieval_zh.click(
|
| 1484 |
+
get_mteb_data,
|
| 1485 |
+
inputs=[task_retrieval_zh, lang_retrieval_zh, datasets_retrieval_zh],
|
| 1486 |
+
outputs=data_retrieval_zh,
|
| 1487 |
)
|
| 1488 |
with gr.TabItem("Polish"):
|
| 1489 |
with gr.Row():
|
|
|
|
| 1502 |
type="pandas",
|
| 1503 |
)
|
| 1504 |
with gr.Row():
|
| 1505 |
+
data_run_retrieval_pl = gr.Button("Refresh")
|
| 1506 |
task_retrieval_pl = gr.Variable(value=["Retrieval"])
|
| 1507 |
lang_retrieval_pl = gr.Variable(value=[])
|
| 1508 |
datasets_retrieval_pl = gr.Variable(value=TASK_LIST_RETRIEVAL_PL)
|
| 1509 |
+
data_run_retrieval_pl.click(
|
| 1510 |
get_mteb_data,
|
| 1511 |
inputs=[task_retrieval_pl, lang_retrieval_pl, datasets_retrieval_pl],
|
| 1512 |
outputs=data_retrieval_pl
|
|
|
|
| 1515 |
with gr.TabItem("English"):
|
| 1516 |
with gr.Row():
|
| 1517 |
gr.Markdown("""
|
| 1518 |
+
**STS English Leaderboard 🤖**
|
| 1519 |
|
| 1520 |
- **Metric:** Spearman correlation based on cosine similarity
|
| 1521 |
- **Languages:** English
|
|
|
|
| 1529 |
with gr.Row():
|
| 1530 |
data_run_sts_en = gr.Button("Refresh")
|
| 1531 |
task_sts_en = gr.Variable(value=["STS"])
|
| 1532 |
+
lang_sts_en = gr.Variable(value=[])
|
| 1533 |
+
datasets_sts_en = gr.Variable(value=TASK_LIST_STS)
|
| 1534 |
data_run_sts_en.click(
|
| 1535 |
get_mteb_data,
|
| 1536 |
+
inputs=[task_sts_en, lang_sts_en, datasets_sts_en],
|
| 1537 |
outputs=data_sts_en,
|
| 1538 |
)
|
| 1539 |
+
with gr.TabItem("Chinese"):
|
| 1540 |
with gr.Row():
|
| 1541 |
gr.Markdown("""
|
| 1542 |
+
**STS Chinese Leaderboard 🤖🇨🇳**
|
| 1543 |
|
| 1544 |
- **Metric:** Spearman correlation based on cosine similarity
|
| 1545 |
+
- **Languages:** Chinese
|
| 1546 |
+
- **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
|
| 1547 |
""")
|
| 1548 |
with gr.Row():
|
| 1549 |
+
data_sts_zh = gr.components.Dataframe(
|
| 1550 |
+
DATA_STS_ZH,
|
| 1551 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_STS_ZH.columns),
|
| 1552 |
type="pandas",
|
| 1553 |
)
|
| 1554 |
with gr.Row():
|
| 1555 |
+
data_run_sts_zh = gr.Button("Refresh")
|
| 1556 |
+
task_sts_zh = gr.Variable(value=["STS"])
|
| 1557 |
+
lang_sts_zh = gr.Variable(value=[])
|
| 1558 |
+
datasets_sts_zh = gr.Variable(value=TASK_LIST_STS_ZH)
|
| 1559 |
+
data_run_sts_zh.click(
|
| 1560 |
+
get_mteb_data,
|
| 1561 |
+
inputs=[task_sts_zh, lang_sts_zh, datasets_sts_zh],
|
| 1562 |
+
outputs=data_sts_zh,
|
| 1563 |
+
)
|
| 1564 |
+
with gr.TabItem("Other"):
|
| 1565 |
+
with gr.Row():
|
| 1566 |
+
gr.Markdown("""
|
| 1567 |
+
**STS Other Leaderboard 👽**
|
| 1568 |
+
|
| 1569 |
+
- **Metric:** Spearman correlation based on cosine similarity
|
| 1570 |
+
- **Languages:** Arabic, Chinese, Dutch, English, French, German, Italian, Korean, Polish, Russian, Spanish (Only language combos not included in the other tabs)
|
| 1571 |
+
""")
|
| 1572 |
+
with gr.Row():
|
| 1573 |
+
data_sts_other = gr.components.Dataframe(
|
| 1574 |
+
DATA_STS_OTHER,
|
| 1575 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_STS_OTHER.columns) * 2,
|
| 1576 |
+
type="pandas",
|
| 1577 |
+
)
|
| 1578 |
+
with gr.Row():
|
| 1579 |
+
data_run_sts_other = gr.Button("Refresh")
|
| 1580 |
+
task_sts_other = gr.Variable(value=["STS"])
|
| 1581 |
+
lang_sts_other = gr.Variable(value=[])
|
| 1582 |
+
datasets_sts_other = gr.Variable(value=TASK_LIST_STS_OTHER)
|
| 1583 |
+
data_run_sts_other.click(
|
| 1584 |
+
get_mteb_data,
|
| 1585 |
+
inputs=[task_sts_other, lang_sts_other, task_sts_other, datasets_sts_other],
|
| 1586 |
+
outputs=data_sts_other
|
| 1587 |
+
)
|
| 1588 |
with gr.TabItem("Summarization"):
|
| 1589 |
with gr.Row():
|
| 1590 |
gr.Markdown("""
|