Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from typing import Any, Dict, List, Optional
|
| 5 |
+
|
| 6 |
+
from huggingface_hub import get_model_info, HfApi, hf_hub_url
|
| 7 |
+
from transformers import pipeline, Pipeline
|
| 8 |
+
|
| 9 |
+
# --- Config ---
|
| 10 |
+
# You gave a Space URL, so we'll assume your *model* lives at "mssaidat/Radiologist".
|
| 11 |
+
# If your actual model id is different, either:
|
| 12 |
+
# 1) change DEFAULT_MODEL_ID below, or
|
| 13 |
+
# 2) type the correct id in the UI and click "Load / Reload".
|
| 14 |
+
DEFAULT_MODEL_ID = os.getenv("MODEL_ID", "mssaidat/Radiologist")
|
| 15 |
+
HF_TOKEN = os.getenv("HF_TOKEN", None)
|
| 16 |
+
|
| 17 |
+
# --- Globals ---
|
| 18 |
+
pl: Optional[Pipeline] = None
|
| 19 |
+
current_task: Optional[str] = None
|
| 20 |
+
current_model_id: str = DEFAULT_MODEL_ID
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
# --- Helpers ---
|
| 24 |
+
def _pretty(obj: Any) -> str:
|
| 25 |
+
try:
|
| 26 |
+
return json.dumps(obj, indent=2, ensure_ascii=False)
|
| 27 |
+
except Exception:
|
| 28 |
+
return str(obj)
|
| 29 |
+
|
| 30 |
+
def detect_task(model_id: str) -> str:
|
| 31 |
+
"""
|
| 32 |
+
Uses the model's Hub config to determine its pipeline task.
|
| 33 |
+
"""
|
| 34 |
+
info = get_model_info(model_id, token=HF_TOKEN)
|
| 35 |
+
# Preferred: pipeline_tag; Fallback: tags
|
| 36 |
+
if info.pipeline_tag:
|
| 37 |
+
return info.pipeline_tag
|
| 38 |
+
# Rare fallback if pipeline_tag missing:
|
| 39 |
+
tags = set(info.tags or [])
|
| 40 |
+
# crude heuristics
|
| 41 |
+
if "text-generation" in tags or "causal-lm" in tags:
|
| 42 |
+
return "text-generation"
|
| 43 |
+
if "text2text-generation" in tags or "seq2seq" in tags:
|
| 44 |
+
return "text2text-generation"
|
| 45 |
+
if "fill-mask" in tags:
|
| 46 |
+
return "fill-mask"
|
| 47 |
+
if "token-classification" in tags:
|
| 48 |
+
return "token-classification"
|
| 49 |
+
if "text-classification" in tags or "sentiment-analysis" in tags:
|
| 50 |
+
return "text-classification"
|
| 51 |
+
if "question-answering" in tags:
|
| 52 |
+
return "question-answering"
|
| 53 |
+
if "image-classification" in tags:
|
| 54 |
+
return "image-classification"
|
| 55 |
+
if "automatic-speech-recognition" in tags or "asr" in tags:
|
| 56 |
+
return "automatic-speech-recognition"
|
| 57 |
+
# Last resort
|
| 58 |
+
return "text-generation"
|
| 59 |
+
|
| 60 |
+
SUPPORTED = {
|
| 61 |
+
# text inputs
|
| 62 |
+
"text-generation",
|
| 63 |
+
"text2text-generation",
|
| 64 |
+
"fill-mask",
|
| 65 |
+
"token-classification",
|
| 66 |
+
"text-classification",
|
| 67 |
+
"question-answering",
|
| 68 |
+
# image input
|
| 69 |
+
"image-classification",
|
| 70 |
+
# audio input
|
| 71 |
+
"automatic-speech-recognition",
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
def load_pipeline(model_id: str):
|
| 75 |
+
global pl, current_task, current_model_id
|
| 76 |
+
task = detect_task(model_id)
|
| 77 |
+
if task not in SUPPORTED:
|
| 78 |
+
raise ValueError(
|
| 79 |
+
f"Detected task '{task}', which this demo doesn't handle yet. "
|
| 80 |
+
f"Supported: {sorted(list(SUPPORTED))}"
|
| 81 |
+
)
|
| 82 |
+
# device_map="auto" to use GPU if available in the Space
|
| 83 |
+
pl = pipeline(task=task, model=model_id, token=HF_TOKEN, device_map="auto")
|
| 84 |
+
current_task = task
|
| 85 |
+
current_model_id = model_id
|
| 86 |
+
return task
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
# --- Inference functions (simple, generic) ---
|
| 90 |
+
def infer_text(prompt: str, max_new_tokens: int, temperature: float, top_p: float) -> str:
|
| 91 |
+
if pl is None or current_task is None:
|
| 92 |
+
return "Model not loaded. Click 'Load / Reload' first."
|
| 93 |
+
|
| 94 |
+
if current_task in ["text-generation", "text2text-generation"]:
|
| 95 |
+
out = pl(
|
| 96 |
+
prompt,
|
| 97 |
+
max_new_tokens=max_new_tokens,
|
| 98 |
+
temperature=temperature,
|
| 99 |
+
top_p=top_p,
|
| 100 |
+
do_sample=True
|
| 101 |
+
)
|
| 102 |
+
# pipelines may return list[dict] with 'generated_text' or 'summary_text'
|
| 103 |
+
if isinstance(out, list) and out and "generated_text" in out[0]:
|
| 104 |
+
return out[0]["generated_text"]
|
| 105 |
+
return _pretty(out)
|
| 106 |
+
|
| 107 |
+
elif current_task == "fill-mask":
|
| 108 |
+
out = pl(prompt)
|
| 109 |
+
return _pretty(out)
|
| 110 |
+
|
| 111 |
+
elif current_task == "text-classification":
|
| 112 |
+
out = pl(prompt, top_k=None) # full distribution if supported
|
| 113 |
+
return _pretty(out)
|
| 114 |
+
|
| 115 |
+
elif current_task == "token-classification": # NER
|
| 116 |
+
out = pl(prompt, aggregation_strategy="simple")
|
| 117 |
+
return _pretty(out)
|
| 118 |
+
|
| 119 |
+
elif current_task == "question-answering":
|
| 120 |
+
# Expect "prompt" like: "QUESTION <sep> CONTEXT"
|
| 121 |
+
# Minimal UX: split on first line break or <sep>
|
| 122 |
+
if "<sep>" in prompt:
|
| 123 |
+
q, c = prompt.split("<sep>", 1)
|
| 124 |
+
elif "\n" in prompt:
|
| 125 |
+
q, c = prompt.split("\n", 1)
|
| 126 |
+
else:
|
| 127 |
+
return ("For question-answering, provide input as:\n"
|
| 128 |
+
"question <sep> context\nor\nquestion\\ncontext")
|
| 129 |
+
out = pl(question=q.strip(), context=c.strip())
|
| 130 |
+
return _pretty(out)
|
| 131 |
+
|
| 132 |
+
else:
|
| 133 |
+
return f"Current task '{current_task}' uses a different tab."
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
def infer_image(image) -> str:
|
| 137 |
+
if pl is None or current_task is None:
|
| 138 |
+
return "Model not loaded. Click 'Load / Reload' first."
|
| 139 |
+
if current_task != "image-classification":
|
| 140 |
+
return f"Loaded task '{current_task}'. Use the appropriate tab."
|
| 141 |
+
out = pl(image)
|
| 142 |
+
return _pretty(out)
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
def infer_audio(audio) -> str:
|
| 146 |
+
if pl is None or current_task is None:
|
| 147 |
+
return "Model not loaded. Click 'Load / Reload' first."
|
| 148 |
+
if current_task != "automatic-speech-recognition":
|
| 149 |
+
return f"Loaded task '{current_task}'. Use the appropriate tab."
|
| 150 |
+
# gr.Audio returns (sample_rate, data) or a file path depending on type
|
| 151 |
+
out = pl(audio)
|
| 152 |
+
return _pretty(out)
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
def do_load(model_id: str):
|
| 156 |
+
try:
|
| 157 |
+
task = load_pipeline(model_id.strip())
|
| 158 |
+
msg = f"✅ Loaded '{model_id}' as task: {task}"
|
| 159 |
+
hint = {
|
| 160 |
+
"text-generation": "Use the **Text** tab. Enter a prompt; tweak max_new_tokens/temperature/top_p.",
|
| 161 |
+
"text2text-generation": "Use the **Text** tab for instructions → outputs.",
|
| 162 |
+
"fill-mask": "Use the **Text** tab. Include the [MASK] token in your input.",
|
| 163 |
+
"text-classification": "Use the **Text** tab. Paste text to classify.",
|
| 164 |
+
"token-classification": "Use the **Text** tab. Paste text for NER.",
|
| 165 |
+
"question-answering": "Use the **Text** tab. Format: `question <sep> context` (or line break).",
|
| 166 |
+
"image-classification": "Use the **Image** tab and upload an image.",
|
| 167 |
+
"automatic-speech-recognition": "Use the **Audio** tab and upload/record audio."
|
| 168 |
+
}.get(task, "")
|
| 169 |
+
return msg + ("\n" + hint if hint else "")
|
| 170 |
+
except Exception as e:
|
| 171 |
+
return f"❌ Load failed: {e}"
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
# --- UI ---
|
| 175 |
+
with gr.Blocks(title="Radiologist — Hugging Face Space", theme=gr.themes.Soft()) as demo:
|
| 176 |
+
gr.Markdown(
|
| 177 |
+
"""
|
| 178 |
+
# 🩺 Radiologist — Universal Model Demo
|
| 179 |
+
This Space auto-detects your model's task from the Hub and gives you the right input panel.
|
| 180 |
+
|
| 181 |
+
**How to use**
|
| 182 |
+
1. Enter your model id (e.g., `mssaidat/Radiologist`) and click **Load / Reload**.
|
| 183 |
+
2. Use the matching tab (**Text**, **Image**, or **Audio**).
|
| 184 |
+
"""
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
with gr.Row():
|
| 188 |
+
model_id_box = gr.Textbox(
|
| 189 |
+
label="Model ID",
|
| 190 |
+
value=DEFAULT_MODEL_ID,
|
| 191 |
+
placeholder="e.g. mssaidat/Radiologist"
|
| 192 |
+
)
|
| 193 |
+
load_btn = gr.Button("Load / Reload", variant="primary")
|
| 194 |
+
status = gr.Markdown("*(No model loaded yet)*")
|
| 195 |
+
|
| 196 |
+
with gr.Tabs():
|
| 197 |
+
with gr.Tab("Text"):
|
| 198 |
+
text_in = gr.Textbox(
|
| 199 |
+
label="Text Input",
|
| 200 |
+
placeholder=(
|
| 201 |
+
"Enter a prompt.\n"
|
| 202 |
+
"For QA models: question <sep> context (or question on first line, context on second)"
|
| 203 |
+
),
|
| 204 |
+
lines=6
|
| 205 |
+
)
|
| 206 |
+
with gr.Row():
|
| 207 |
+
max_new_tokens = gr.Slider(1, 1024, value=256, step=1, label="max_new_tokens")
|
| 208 |
+
temperature = gr.Slider(0.0, 2.0, value=0.7, step=0.05, label="temperature")
|
| 209 |
+
top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.01, label="top_p")
|
| 210 |
+
run_text = gr.Button("Run Text Inference")
|
| 211 |
+
text_out = gr.Code(label="Output", language="json")
|
| 212 |
+
|
| 213 |
+
with gr.Tab("Image"):
|
| 214 |
+
img_in = gr.Image(label="Upload Image", type="pil")
|
| 215 |
+
run_img = gr.Button("Run Image Inference")
|
| 216 |
+
img_out = gr.Code(label="Output", language="json")
|
| 217 |
+
|
| 218 |
+
with gr.Tab("Audio"):
|
| 219 |
+
aud_in = gr.Audio(label="Upload/Record Audio", type="filepath")
|
| 220 |
+
run_aud = gr.Button("Run ASR Inference")
|
| 221 |
+
aud_out = gr.Code(label="Output", language="json")
|
| 222 |
+
|
| 223 |
+
# Wire events
|
| 224 |
+
load_btn.click(fn=do_load, inputs=model_id_box, outputs=status)
|
| 225 |
+
run_text.click(fn=infer_text, inputs=[text_in, max_new_tokens, temperature, top_p], outputs=text_out)
|
| 226 |
+
run_img.click(fn=infer_image, inputs=img_in, outputs=img_out)
|
| 227 |
+
run_aud.click(fn=infer_audio, inputs=aud_in, outputs=aud_out)
|
| 228 |
+
|
| 229 |
+
demo.queue().launch()
|