mshamrai's picture
chore: init demo
f9b063b
import gradio as gr
import pandas as pd
import numpy as np
import pickle
import os
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
from utils import (plot_distances_tsne,
plot_distances_umap,
cluster_languages_hdbscan,
cluster_languages_kmeans,
plot_mst,
cluster_languages_by_families,
cluster_languages_by_subfamilies,
filter_languages_by_families)
from functools import partial
with open("../../results/languages_list.pkl", "rb") as f:
languages = pickle.load(f)
DATASETS = ["wikimedia/wikipedia", "uonlp/CulturaX", "HuggingFaceFW/fineweb-2"]
MODELS = ["mistralai/Mistral-7B-v0.1", "google/gemma-3-4b-pt", "meta-llama/Llama-3.2-1B"]
distance_matrices = {
dataset: {
model: np.load(os.path.join("../../results", dataset, model, "distances_matrix.npy"))
for model in MODELS
}
for dataset in DATASETS
}
average_distances_matrix = np.load("../../results/average_distances_matrix.npy")
def filter_languages_nan(model, dataset, use_average):
if use_average:
matrix = average_distances_matrix
else:
matrix = distance_matrices[dataset][model]
vector = matrix[0]
updated_languages = np.array(languages)[~np.isnan(vector)]
updated_matrix = matrix[~np.isnan(vector), :][:, ~np.isnan(vector)]
return updated_matrix, updated_languages
def get_similar_languages(model, dataset, selected_language, use_average, n):
"""
Retrieves the distances for the selected language from the chosen model and dataset,
sorts them by similarity (lowest distance first), and returns a DataFrame.
"""
if use_average:
matrix = average_distances_matrix
else:
matrix = distance_matrices[dataset][model]
selected_language_index = languages.index(selected_language)
distances = matrix[selected_language_index]
df = pd.DataFrame({"Language": languages, "Distance": distances})
sorted_distances = df.sort_values(by="Distance")
sorted_distances.drop(index=selected_language_index, inplace=True)
sorted_distances.reset_index(drop=True, inplace=True)
sorted_distances.reset_index(inplace=True)
sorted_distances["Distance"] = sorted_distances["Distance"].round(4)
return sorted_distances.head(n)
def update_languages(model, dataset):
"""
Returns the language list based on the given model and dataset.
"""
matrix = distance_matrices[dataset][model]
vector = matrix[0]
updated_languages = np.array(languages)[~np.isnan(vector)]
return list(updated_languages)
def update_language_options(model, dataset, language, use_average):
if use_average:
updated_languages = languages
else:
updated_languages = update_languages(model, dataset)
if language not in updated_languages:
language = updated_languages[0]
return gr.Dropdown(label="Language", choices=updated_languages, value=language)
def toggle_inputs(use_average):
if use_average:
return gr.update(interactive=False, visible=False), gr.update(interactive=False, visible=False)
else:
return gr.update(interactive=True, visible=True), gr.update(interactive=True, visible=True)
i = 0
def plot_distances(model, dataset, use_average, cluster_method, cluster_method_param, plot_fn):
"""
Plots all languages from the distances matrix using t-SNE.
"""
global i
updated_matrix, updated_languages = filter_languages_nan(model, dataset, use_average)
if cluster_method == "HDBSCAN":
filtered_matrix, filtered_languages, clusters = cluster_languages_hdbscan(
updated_matrix, updated_languages, min_cluster_size=cluster_method_param
)
legends = None
elif cluster_method == "KMeans":
filtered_matrix, filtered_languages, clusters = cluster_languages_kmeans(
updated_matrix, updated_languages, n_clusters=cluster_method_param
)
legends = None
elif cluster_method == "Family":
clusters, legends = cluster_languages_by_families(updated_languages)
filtered_matrix = updated_matrix
filtered_languages = updated_languages
elif cluster_method == "Subfamily":
clusters, legends = cluster_languages_by_subfamilies(updated_languages)
filtered_matrix = updated_matrix
filtered_languages = updated_languages
else:
raise ValueError("Invalid cluster method")
fig = plot_fn(model, dataset, use_average, filtered_matrix, filtered_languages, clusters, legends)
fig.tight_layout()
fig.savefig(f"plots/plot_{i}.pdf", format="pdf")
i += 1
return fig
with gr.Blocks() as demo:
gr.Markdown("## Language Distance Explorer")
average_checkbox = gr.Checkbox(label="Use Average Distances", value=False)
with gr.Row():
model_input = gr.Dropdown(label="Model", choices=MODELS, value=MODELS[0])
dataset_input = gr.Dropdown(
label="Dataset",
choices=DATASETS,
value=DATASETS[0]
)
with gr.Tab(label="Closest Languages Table"):
with gr.Row():
language_input = gr.Dropdown(label="Language", choices=languages, value=languages[0])
top_n_input = gr.Slider(label="Top N", minimum=1, maximum=30, step=1, value=10)
output_table = gr.Dataframe(label="Similar Languages")
model_input.change(fn=update_language_options, inputs=[model_input, dataset_input, language_input, average_checkbox], outputs=language_input)
dataset_input.change(fn=update_language_options, inputs=[model_input, dataset_input, language_input, average_checkbox], outputs=language_input)
language_input.change(fn=get_similar_languages, inputs=[model_input, dataset_input, language_input, average_checkbox, top_n_input], outputs=output_table)
model_input.change(fn=get_similar_languages, inputs=[model_input, dataset_input, language_input, average_checkbox, top_n_input], outputs=output_table)
dataset_input.change(fn=get_similar_languages, inputs=[model_input, dataset_input, language_input, average_checkbox, top_n_input], outputs=output_table)
top_n_input.change(fn=get_similar_languages, inputs=[model_input, dataset_input, language_input, average_checkbox, top_n_input], outputs=output_table)
average_checkbox.change(
fn=toggle_inputs,
inputs=[average_checkbox],
outputs=[model_input, dataset_input]
)
average_checkbox.change(fn=update_language_options, inputs=[model_input, dataset_input, language_input, average_checkbox], outputs=language_input)
average_checkbox.change(fn=get_similar_languages, inputs=[model_input, dataset_input, language_input, average_checkbox, top_n_input], outputs=output_table)
with gr.Tab(label="Distance Plot"):
with gr.Row():
cluster_method_input = gr.Dropdown(label="Cluster Method", choices=["HDBSCAN", "KMeans", "Family", "Subfamily"], value="HDBSCAN")
clusters_input = gr.Slider(label="Minimum Elements in a Cluster", minimum=2, maximum=10, step=1, value=2)
def update_clusters_input_option(cluster_method):
if cluster_method == "HDBSCAN":
return gr.Slider(label="Minimum Elements in a Cluster", minimum=2, maximum=10, step=1, value=2, visible=True, interactive=True)
elif cluster_method == "KMeans":
return gr.Slider(label="Number of Clusters", minimum=2, maximum=20, step=1, value=2, visible=True, interactive=True)
else:
return gr.update(interactive=False, visible=False)
cluster_method_input.change(fn=update_clusters_input_option, inputs=[cluster_method_input], outputs=clusters_input)
with gr.Row():
plot_tsne_button = gr.Button("Plot t-SNE")
plot_umap_button = gr.Button("Plot UMAP")
plot_mst_button = gr.Button("Plot MST")
with gr.Row():
plot_output = gr.Plot(label="Distance Plot")
plot_tsne_button.click(fn=partial(plot_distances, plot_fn=plot_distances_tsne),
inputs=[model_input, dataset_input, average_checkbox, cluster_method_input, clusters_input],
outputs=plot_output)
plot_umap_button.click(fn=partial(plot_distances, plot_fn=plot_distances_umap),
inputs=[model_input, dataset_input, average_checkbox, cluster_method_input, clusters_input],
outputs=plot_output)
plot_mst_button.click(fn=partial(plot_distances, plot_fn=plot_mst),
inputs=[model_input, dataset_input, average_checkbox, cluster_method_input, clusters_input],
outputs=plot_output)
with gr.Tab(label="Language Families Subplot"):
checked_families_input = gr.CheckboxGroup(label="Language Families",
choices=[
'Afroasiatic',
'Austroasiatic',
'Austronesian',
'Constructed',
'Creole',
'Dravidian',
'Germanic',
'Indo-European',
'Japonic',
'Kartvelian',
'Koreanic',
'Language Isolate',
'Niger-Congo',
'Northeast Caucasian',
'Romance',
'Sino-Tibetan',
'Turkic',
'Uralic'
],
value=["Indo-European"])
with gr.Row():
plot_family_button = gr.Button("Plot Families")
plot_figsize_h_input = gr.Slider(label="Figure Height", minimum=5, maximum=30, step=1, value=15)
plot_figsize_w_input = gr.Slider(label="Figure Width", minimum=5, maximum=30, step=1, value=15)
plot_family_output = gr.Plot(label="Families Plot")
def plot_families_subfamilies(families, model, dataset, use_average, figsize_h, figsize_w):
global i
updated_matrix, updated_languages = filter_languages_nan(model, dataset, use_average)
updated_matrix, updated_languages = filter_languages_by_families(updated_matrix, updated_languages, families)
clusters, legends = cluster_languages_by_subfamilies(updated_languages)
fig = plot_mst(model, dataset, use_average, updated_matrix, updated_languages, clusters, legends, fig_size=(figsize_w, figsize_h))
fig.tight_layout()
fig.savefig(f"plots/plot_{i}.pdf", format="pdf")
i += 1
return fig
plot_family_button.click(fn=plot_families_subfamilies,
inputs=[checked_families_input, model_input, dataset_input, average_checkbox, plot_figsize_h_input, plot_figsize_w_input],
outputs=plot_family_output)
demo.launch(share=True)