Update app.py
Browse files
app.py
CHANGED
|
@@ -11,8 +11,16 @@ from collections import Counter
|
|
| 11 |
from typing import List, Tuple, Dict
|
| 12 |
import random
|
| 13 |
import math
|
| 14 |
-
|
| 15 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
import gradio as gr
|
| 17 |
|
| 18 |
class SelfOrganizingTokenizer:
|
|
@@ -151,56 +159,54 @@ class AITrainer:
|
|
| 151 |
"""Carica dataset pubblici senza API key"""
|
| 152 |
datasets = []
|
| 153 |
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
oscar = load_dataset("oscar-corpus/OSCAR-2201", "it", split="train[:5000]")
|
| 175 |
-
for item in oscar:
|
| 176 |
-
if len(item['text']) > 100:
|
| 177 |
-
datasets.append(item['text'])
|
| 178 |
-
except:
|
| 179 |
-
pass
|
| 180 |
|
| 181 |
# Dataset di testo semplice da URL pubblici
|
| 182 |
urls = [
|
| 183 |
"https://www.gutenberg.org/files/2000/2000-0.txt", # Divina Commedia
|
| 184 |
-
"https://www.gutenberg.org/files/1065/1065-0.txt" # I Promessi Sposi
|
| 185 |
]
|
| 186 |
|
| 187 |
for url in urls:
|
| 188 |
try:
|
| 189 |
-
response = requests.get(url, timeout=
|
| 190 |
if response.status_code == 200:
|
| 191 |
text = response.text
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
continue
|
| 196 |
|
| 197 |
-
# Genera dati sintetici
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
|
| 202 |
self.datasets = datasets[:10000] # Limita a 10k esempi
|
| 203 |
-
print(f"
|
| 204 |
|
| 205 |
def generate_synthetic_data(self, num_samples):
|
| 206 |
"""Genera dati sintetici per il training"""
|
|
|
|
| 11 |
from typing import List, Tuple, Dict
|
| 12 |
import random
|
| 13 |
import math
|
| 14 |
+
try:
|
| 15 |
+
from datasets import load_dataset
|
| 16 |
+
except ImportError:
|
| 17 |
+
print("datasets non disponibile, usando solo dati sintetici")
|
| 18 |
+
load_dataset = None
|
| 19 |
+
try:
|
| 20 |
+
from transformers import AutoTokenizer
|
| 21 |
+
except ImportError:
|
| 22 |
+
print("transformers non disponibile, usando tokenizer personalizzato")
|
| 23 |
+
AutoTokenizer = None
|
| 24 |
import gradio as gr
|
| 25 |
|
| 26 |
class SelfOrganizingTokenizer:
|
|
|
|
| 159 |
"""Carica dataset pubblici senza API key"""
|
| 160 |
datasets = []
|
| 161 |
|
| 162 |
+
if load_dataset:
|
| 163 |
+
try:
|
| 164 |
+
# Wikipedia in italiano
|
| 165 |
+
wiki = load_dataset("wikipedia", "20220301.it", split="train[:1000]", trust_remote_code=True)
|
| 166 |
+
for item in wiki:
|
| 167 |
+
if len(item['text']) > 100:
|
| 168 |
+
datasets.append(item['text'])
|
| 169 |
+
print(f"Caricati {len(datasets)} esempi da Wikipedia")
|
| 170 |
+
except Exception as e:
|
| 171 |
+
print(f"Wikipedia non disponibile: {e}")
|
| 172 |
+
|
| 173 |
+
try:
|
| 174 |
+
# Common Crawl
|
| 175 |
+
cc = load_dataset("cc100", lang="it", split="train[:500]", trust_remote_code=True)
|
| 176 |
+
for item in cc:
|
| 177 |
+
if len(item['text']) > 100:
|
| 178 |
+
datasets.append(item['text'])
|
| 179 |
+
print(f"Caricati esempi da Common Crawl")
|
| 180 |
+
except Exception as e:
|
| 181 |
+
print(f"Common Crawl non disponibile: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
# Dataset di testo semplice da URL pubblici
|
| 184 |
urls = [
|
| 185 |
"https://www.gutenberg.org/files/2000/2000-0.txt", # Divina Commedia
|
|
|
|
| 186 |
]
|
| 187 |
|
| 188 |
for url in urls:
|
| 189 |
try:
|
| 190 |
+
response = requests.get(url, timeout=10)
|
| 191 |
if response.status_code == 200:
|
| 192 |
text = response.text
|
| 193 |
+
# Filtra contenuto utile
|
| 194 |
+
lines = text.split('\n')
|
| 195 |
+
filtered_lines = [line.strip() for line in lines if len(line.strip()) > 50]
|
| 196 |
+
chunks = filtered_lines[:1000] # Primi 1000 chunk
|
| 197 |
+
datasets.extend(chunks)
|
| 198 |
+
print(f"Caricati {len(chunks)} chunk da {url}")
|
| 199 |
+
except Exception as e:
|
| 200 |
+
print(f"Errore caricamento {url}: {e}")
|
| 201 |
continue
|
| 202 |
|
| 203 |
+
# Genera dati sintetici
|
| 204 |
+
print("Generazione dati sintetici...")
|
| 205 |
+
synthetic_texts = self.generate_synthetic_data(8000)
|
| 206 |
+
datasets.extend(synthetic_texts)
|
| 207 |
|
| 208 |
self.datasets = datasets[:10000] # Limita a 10k esempi
|
| 209 |
+
print(f"Dataset finale: {len(self.datasets)} esempi")
|
| 210 |
|
| 211 |
def generate_synthetic_data(self, num_samples):
|
| 212 |
"""Genera dati sintetici per il training"""
|