Update app.py
Browse files
app.py
CHANGED
|
@@ -1,427 +1,285 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import requests
|
| 3 |
-
import json
|
| 4 |
import re
|
| 5 |
import xml.etree.ElementTree as ET
|
| 6 |
-
import numpy as np
|
| 7 |
import random
|
| 8 |
-
import hashlib
|
| 9 |
from datetime import datetime
|
| 10 |
from collections import defaultdict, Counter
|
| 11 |
-
import time
|
| 12 |
|
| 13 |
-
class
|
| 14 |
def __init__(self):
|
| 15 |
-
# Token database e vocabulary
|
| 16 |
-
self.vocabulary = {}
|
| 17 |
-
self.token_to_id = {}
|
| 18 |
-
self.vocab_size = 0
|
| 19 |
-
|
| 20 |
-
# Neural Network parameters
|
| 21 |
-
self.embedding_dim = 256
|
| 22 |
-
self.hidden_dim = 512
|
| 23 |
-
self.context_length = 32
|
| 24 |
-
|
| 25 |
-
# Knowledge systems
|
| 26 |
self.knowledge_base = defaultdict(list)
|
| 27 |
-
self.qa_patterns =
|
| 28 |
-
self.
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
self.
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
"
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
]
|
| 47 |
}
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
self.max_response_length = 50
|
| 54 |
-
|
| 55 |
-
self.initialize_network()
|
| 56 |
|
| 57 |
-
|
| 58 |
-
"
|
| 59 |
-
self.embeddings = np.random.normal(0, 0.1, (10000, self.embedding_dim))
|
| 60 |
-
self.hidden_weights = np.random.normal(0, 0.1, (self.embedding_dim * self.context_length, self.hidden_dim))
|
| 61 |
-
self.hidden_bias = np.zeros(self.hidden_dim)
|
| 62 |
-
self.output_weights = np.random.normal(0, 0.1, (self.hidden_dim, 10000))
|
| 63 |
-
self.output_bias = np.zeros(10000)
|
| 64 |
-
print("π§ Neural Network initialized")
|
| 65 |
|
| 66 |
-
def collect_training_data(self
|
| 67 |
"""Collect training data from public sources"""
|
| 68 |
-
print("π·οΈ Collecting
|
| 69 |
-
|
| 70 |
-
collected_texts = []
|
| 71 |
-
|
| 72 |
-
# Collect news data
|
| 73 |
-
news_texts = self.scrape_news_feeds()
|
| 74 |
-
collected_texts.extend(news_texts)
|
| 75 |
-
print(f"π° Collected {len(news_texts)} news articles")
|
| 76 |
|
| 77 |
-
|
| 78 |
-
qa_patterns = self.create_qa_patterns()
|
| 79 |
-
collected_texts.extend(qa_patterns)
|
| 80 |
-
print(f"β Generated {len(qa_patterns)} Q&A patterns")
|
| 81 |
|
| 82 |
-
#
|
| 83 |
-
|
|
|
|
| 84 |
|
| 85 |
-
#
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
print(f"π― Collected {self.total_tokens_collected:,} tokens")
|
| 95 |
-
|
| 96 |
-
# Build systems
|
| 97 |
-
self.build_vocabulary(all_tokens)
|
| 98 |
-
self.build_knowledge_base(quality_texts)
|
| 99 |
-
self.extract_patterns(all_tokens)
|
| 100 |
-
|
| 101 |
-
return all_tokens
|
| 102 |
|
| 103 |
-
def
|
| 104 |
-
"""
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
-
for
|
| 108 |
try:
|
| 109 |
-
response = requests.get(
|
| 110 |
if response.status_code == 200:
|
| 111 |
root = ET.fromstring(response.content)
|
| 112 |
-
for item in root.findall(".//item")[:3]:
|
| 113 |
title = item.find("title")
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
continue
|
| 122 |
|
| 123 |
-
return
|
| 124 |
-
|
| 125 |
-
def create_qa_patterns(self):
|
| 126 |
-
"""Create structured Q&A patterns"""
|
| 127 |
-
patterns = []
|
| 128 |
-
|
| 129 |
-
# Question-answer templates
|
| 130 |
-
qa_templates = [
|
| 131 |
-
("What is artificial intelligence?", "Artificial intelligence is a technology that enables machines to perform tasks requiring human intelligence."),
|
| 132 |
-
("How do computers work?", "Computers work by processing data through electronic circuits and following programmed instructions."),
|
| 133 |
-
("Where is Paris located?", "Paris is located in France and serves as the capital city."),
|
| 134 |
-
("Why is education important?", "Education is important because it develops knowledge, skills, and critical thinking abilities."),
|
| 135 |
-
("What is machine learning?", "Machine learning is a subset of AI that allows systems to learn from data without explicit programming."),
|
| 136 |
-
("How does the internet work?", "The internet works through interconnected networks that enable global communication and data sharing."),
|
| 137 |
-
("What is climate change?", "Climate change refers to long-term changes in global weather patterns and temperatures."),
|
| 138 |
-
("Why do we need renewable energy?", "Renewable energy is needed to reduce environmental impact and ensure sustainable power sources.")
|
| 139 |
-
]
|
| 140 |
-
|
| 141 |
-
for question, answer in qa_templates:
|
| 142 |
-
pattern = f"Question: {question} Answer: {answer}"
|
| 143 |
-
patterns.append(pattern)
|
| 144 |
-
|
| 145 |
-
return patterns
|
| 146 |
-
|
| 147 |
-
def clean_text(self, text):
|
| 148 |
-
"""Clean and normalize text"""
|
| 149 |
-
if not text:
|
| 150 |
-
return ""
|
| 151 |
-
|
| 152 |
-
# Remove HTML tags and normalize
|
| 153 |
-
text = re.sub(r'<[^>]+>', ' ', text)
|
| 154 |
-
text = re.sub(r'\s+', ' ', text)
|
| 155 |
-
text = re.sub(r'[^\w\s\.\,\!\?\;\:\-\(\)\"\']+', ' ', text)
|
| 156 |
-
|
| 157 |
-
return text.strip()
|
| 158 |
-
|
| 159 |
-
def tokenize_text(self, text):
|
| 160 |
-
"""Tokenize text into tokens"""
|
| 161 |
-
tokens = re.findall(r'\w+|[.!?;,]', text.lower())
|
| 162 |
-
return tokens
|
| 163 |
-
|
| 164 |
-
def build_vocabulary(self, tokens):
|
| 165 |
-
"""Build vocabulary from tokens"""
|
| 166 |
-
token_counts = Counter(tokens)
|
| 167 |
-
filtered_tokens = {token: count for token, count in token_counts.items() if count >= 2}
|
| 168 |
-
|
| 169 |
-
vocab_list = ['<PAD>', '<UNK>', '<START>', '<END>'] + list(filtered_tokens.keys())
|
| 170 |
-
|
| 171 |
-
self.vocabulary = {i: token for i, token in enumerate(vocab_list)}
|
| 172 |
-
self.token_to_id = {token: i for i, token in enumerate(vocab_list)}
|
| 173 |
-
self.vocab_size = len(vocab_list)
|
| 174 |
-
|
| 175 |
-
print(f"π Built vocabulary: {self.vocab_size:,} tokens")
|
| 176 |
-
|
| 177 |
-
def build_knowledge_base(self, texts):
|
| 178 |
-
"""Build knowledge base from texts"""
|
| 179 |
-
for text in texts:
|
| 180 |
-
sentences = re.split(r'[.!?]+', text)
|
| 181 |
-
for sentence in sentences:
|
| 182 |
-
sentence = sentence.strip()
|
| 183 |
-
if len(sentence) > 20:
|
| 184 |
-
# Extract main topic (simple approach)
|
| 185 |
-
words = sentence.split()
|
| 186 |
-
for word in words:
|
| 187 |
-
if word[0].isupper() and len(word) > 3:
|
| 188 |
-
topic = word.lower()
|
| 189 |
-
self.knowledge_base[topic].append(sentence)
|
| 190 |
-
break
|
| 191 |
|
| 192 |
-
def
|
| 193 |
-
"""
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
current_token = token_ids[i]
|
| 199 |
-
next_token = token_ids[i + 1]
|
| 200 |
-
self.bigram_counts[current_token][next_token] += 1
|
| 201 |
-
|
| 202 |
-
print(f"π Extracted {len(self.bigram_counts):,} bigram patterns")
|
| 203 |
-
|
| 204 |
-
def train_system(self, training_tokens, epochs=3):
|
| 205 |
-
"""Train the Q&A system"""
|
| 206 |
-
print(f"π Training system for {epochs} epochs...")
|
| 207 |
-
|
| 208 |
-
token_ids = [self.token_to_id.get(token, 1) for token in training_tokens]
|
| 209 |
-
|
| 210 |
-
for epoch in range(epochs):
|
| 211 |
-
print(f"Training epoch {epoch + 1}/{epochs}")
|
| 212 |
-
|
| 213 |
-
# Simple training simulation
|
| 214 |
-
total_batches = min(100, len(token_ids) // 10)
|
| 215 |
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
|
| 224 |
def answer_question(self, question):
|
| 225 |
-
"""Answer a question using
|
| 226 |
if not question.strip():
|
| 227 |
-
return "Hello! I'm an AI that learns from data. Ask me a question!"
|
| 228 |
|
| 229 |
-
|
| 230 |
-
self.context_memory.append(question)
|
| 231 |
-
if len(self.context_memory) > 5:
|
| 232 |
-
self.context_memory.pop(0)
|
| 233 |
|
| 234 |
-
#
|
| 235 |
-
|
|
|
|
|
|
|
| 236 |
|
| 237 |
-
#
|
| 238 |
-
|
|
|
|
|
|
|
| 239 |
|
| 240 |
-
#
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
return response
|
| 244 |
-
|
| 245 |
-
def classify_question(self, question):
|
| 246 |
-
"""Classify question type"""
|
| 247 |
-
question_lower = question.lower()
|
| 248 |
-
|
| 249 |
-
if any(word in question_lower for word in ['what', 'define', 'explain']):
|
| 250 |
-
return 'definition'
|
| 251 |
-
elif any(word in question_lower for word in ['where', 'location']):
|
| 252 |
-
return 'location'
|
| 253 |
-
elif any(word in question_lower for word in ['how', 'method']):
|
| 254 |
-
return 'process'
|
| 255 |
-
elif any(word in question_lower for word in ['why', 'reason']):
|
| 256 |
-
return 'explanation'
|
| 257 |
-
else:
|
| 258 |
-
return 'general'
|
| 259 |
|
| 260 |
-
def
|
| 261 |
-
"""
|
| 262 |
-
|
| 263 |
-
|
| 264 |
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
relevant_facts.extend(facts[:2])
|
| 268 |
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
for fact in facts:
|
| 272 |
-
fact_words = set(fact.lower().split())
|
| 273 |
-
overlap = len(question_words.intersection(fact_words))
|
| 274 |
-
if overlap >= 2:
|
| 275 |
-
relevant_facts.append(fact)
|
| 276 |
-
if len(relevant_facts) >= 3:
|
| 277 |
-
break
|
| 278 |
|
| 279 |
-
return
|
| 280 |
|
| 281 |
-
def
|
| 282 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 283 |
|
| 284 |
-
|
|
|
|
|
|
|
|
|
|
| 285 |
templates = {
|
| 286 |
-
'
|
| 287 |
-
'
|
| 288 |
-
'
|
| 289 |
-
'
|
| 290 |
-
'general': "From my knowledge base,"
|
| 291 |
}
|
| 292 |
|
| 293 |
-
|
| 294 |
|
| 295 |
-
if
|
| 296 |
-
|
| 297 |
-
response = f"{starter} {knowledge[0][:150]}..."
|
| 298 |
-
if len(knowledge) > 1:
|
| 299 |
-
response += f" Additionally, {knowledge[1][:100]}..."
|
| 300 |
else:
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
# Ensure proper ending
|
| 312 |
-
if not response.endswith('.'):
|
| 313 |
-
response += '.'
|
| 314 |
|
| 315 |
-
return
|
| 316 |
|
| 317 |
-
def
|
| 318 |
-
"""Get system
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
"
|
| 323 |
-
|
| 324 |
-
"
|
| 325 |
-
|
| 326 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 327 |
|
| 328 |
-
# Initialize system
|
| 329 |
-
|
| 330 |
|
| 331 |
-
def
|
| 332 |
-
"""
|
| 333 |
try:
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
if len(tokens) > 50:
|
| 338 |
-
# Train system
|
| 339 |
-
qa_system.train_system(tokens, epochs=2)
|
| 340 |
-
return "β
Q&A System training completed successfully!"
|
| 341 |
-
else:
|
| 342 |
-
return "β Insufficient data collected for training"
|
| 343 |
except Exception as e:
|
| 344 |
-
return f"β Training
|
| 345 |
|
| 346 |
-
def
|
| 347 |
-
"""
|
| 348 |
-
if not message
|
| 349 |
-
|
| 350 |
-
else:
|
| 351 |
-
response = qa_system.answer_question(message)
|
| 352 |
|
| 353 |
-
|
| 354 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 355 |
|
| 356 |
-
def
|
| 357 |
-
"""
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
status = "π€ **QUESTION ANSWERING AI STATUS**\n\n"
|
| 361 |
-
|
| 362 |
-
if stats['tokens_collected'] == 0:
|
| 363 |
-
status += "β³ **System not trained yet**\nClick 'Start Training' to begin\n\n"
|
| 364 |
-
else:
|
| 365 |
-
status += "β
**System trained and operational**\n\n"
|
| 366 |
-
|
| 367 |
-
status += "**π Statistics:**\n"
|
| 368 |
-
status += f"β’ **Tokens collected:** {stats['tokens_collected']:,}\n"
|
| 369 |
-
status += f"β’ **Vocabulary size:** {stats['vocabulary_size']:,}\n"
|
| 370 |
-
status += f"β’ **Knowledge topics:** {stats['knowledge_topics']:,}\n"
|
| 371 |
-
status += f"β’ **Training epochs:** {stats['epochs_trained']}\n"
|
| 372 |
-
status += f"β’ **Pattern database:** {stats['bigram_patterns']:,} patterns\n"
|
| 373 |
-
status += f"β’ **Conversation memory:** {stats['memory_items']} messages\n"
|
| 374 |
-
|
| 375 |
-
status += "\n**π― Capabilities:**\n"
|
| 376 |
-
status += "β’ Answers questions using learned knowledge\n"
|
| 377 |
-
status += "β’ Processes natural language queries\n"
|
| 378 |
-
status += "β’ Maintains conversation context\n"
|
| 379 |
-
status += "β’ Uses pattern matching for responses\n"
|
| 380 |
-
|
| 381 |
-
return status
|
| 382 |
|
| 383 |
# Create Gradio interface
|
| 384 |
-
with gr.Blocks(theme=gr.themes.Soft()) as
|
| 385 |
|
| 386 |
gr.HTML("""
|
| 387 |
<div style="text-align: center; padding: 20px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; border-radius: 10px; margin-bottom: 20px;">
|
| 388 |
-
<h1>π€ Question Answering AI</h1>
|
| 389 |
-
<p><b>
|
| 390 |
-
<p>
|
| 391 |
</div>
|
| 392 |
""")
|
| 393 |
|
| 394 |
with gr.Row():
|
| 395 |
-
with gr.Column(scale=
|
| 396 |
-
gr.
|
| 397 |
|
| 398 |
chatbot = gr.Chatbot(
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
)
|
| 403 |
|
| 404 |
msg_input = gr.Textbox(
|
| 405 |
-
label="Your
|
| 406 |
placeholder="Ask me anything: What is AI? How does technology work?",
|
| 407 |
lines=2
|
| 408 |
)
|
| 409 |
|
| 410 |
with gr.Row():
|
| 411 |
send_btn = gr.Button("π¬ Send", variant="primary")
|
| 412 |
-
clear_btn = gr.Button("
|
| 413 |
|
| 414 |
with gr.Column(scale=1):
|
| 415 |
-
gr.
|
| 416 |
|
| 417 |
-
|
| 418 |
label="System Status",
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
)
|
| 423 |
|
| 424 |
-
train_btn = gr.Button("π Start Training", variant="
|
| 425 |
refresh_btn = gr.Button("π Refresh Status", variant="secondary")
|
| 426 |
|
| 427 |
# Example questions
|
|
@@ -429,58 +287,43 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 429 |
examples=[
|
| 430 |
"What is artificial intelligence?",
|
| 431 |
"How do computers work?",
|
| 432 |
-
"Where is Paris located?",
|
| 433 |
"Why is education important?",
|
| 434 |
-
"Explain machine learning",
|
| 435 |
-
"How does the internet work?",
|
| 436 |
"What is climate change?",
|
| 437 |
-
"
|
|
|
|
| 438 |
],
|
| 439 |
inputs=msg_input,
|
| 440 |
-
label="
|
| 441 |
)
|
| 442 |
|
| 443 |
-
gr.HTML("""
|
| 444 |
-
<div style="margin-top: 20px; padding: 15px; background-color: #f0f0f0; border-radius: 8px;">
|
| 445 |
-
<h4>π§ How It Works:</h4>
|
| 446 |
-
<ol>
|
| 447 |
-
<li><b>Data Collection:</b> Gathers text from news feeds and creates Q&A patterns</li>
|
| 448 |
-
<li><b>Knowledge Building:</b> Extracts facts and builds searchable knowledge base</li>
|
| 449 |
-
<li><b>Pattern Learning:</b> Learns language patterns from collected data</li>
|
| 450 |
-
<li><b>Question Processing:</b> Classifies questions and finds relevant knowledge</li>
|
| 451 |
-
<li><b>Response Generation:</b> Creates intelligent answers using learned patterns</li>
|
| 452 |
-
</ol>
|
| 453 |
-
<p><b>π― Result:</b> An AI that can answer questions using knowledge learned from data!</p>
|
| 454 |
-
</div>
|
| 455 |
-
""")
|
| 456 |
-
|
| 457 |
# Event handlers
|
| 458 |
send_btn.click(
|
| 459 |
-
|
| 460 |
inputs=[msg_input, chatbot],
|
| 461 |
outputs=[chatbot, msg_input]
|
| 462 |
)
|
| 463 |
|
| 464 |
msg_input.submit(
|
| 465 |
-
|
| 466 |
inputs=[msg_input, chatbot],
|
| 467 |
outputs=[chatbot, msg_input]
|
| 468 |
)
|
| 469 |
|
| 470 |
clear_btn.click(
|
| 471 |
-
lambda: ([], ""),
|
| 472 |
outputs=[chatbot, msg_input]
|
| 473 |
)
|
| 474 |
|
| 475 |
train_btn.click(
|
| 476 |
-
|
| 477 |
-
outputs=[
|
| 478 |
)
|
| 479 |
|
| 480 |
refresh_btn.click(
|
| 481 |
-
|
| 482 |
-
outputs=[
|
| 483 |
)
|
| 484 |
|
|
|
|
| 485 |
if __name__ == "__main__":
|
| 486 |
-
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import requests
|
|
|
|
| 3 |
import re
|
| 4 |
import xml.etree.ElementTree as ET
|
|
|
|
| 5 |
import random
|
|
|
|
| 6 |
from datetime import datetime
|
| 7 |
from collections import defaultdict, Counter
|
|
|
|
| 8 |
|
| 9 |
+
class SimpleQAAI:
|
| 10 |
def __init__(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
self.knowledge_base = defaultdict(list)
|
| 12 |
+
self.qa_patterns = {}
|
| 13 |
+
self.vocabulary = set()
|
| 14 |
+
self.total_tokens = 0
|
| 15 |
+
self.is_trained = False
|
| 16 |
+
|
| 17 |
+
# Initialize with basic Q&A patterns
|
| 18 |
+
self.initialize_basic_knowledge()
|
| 19 |
+
|
| 20 |
+
def initialize_basic_knowledge(self):
|
| 21 |
+
"""Initialize with basic Q&A knowledge"""
|
| 22 |
+
basic_qa = {
|
| 23 |
+
"what is artificial intelligence": "Artificial intelligence is a technology that enables machines to perform tasks that typically require human intelligence, such as learning, reasoning, and problem-solving.",
|
| 24 |
+
"how do computers work": "Computers work by processing data through electronic circuits, following programmed instructions to perform calculations and operations.",
|
| 25 |
+
"where is paris": "Paris is located in France and serves as the capital city of the country.",
|
| 26 |
+
"why is education important": "Education is important because it develops knowledge, critical thinking skills, and prepares people for careers and civic participation.",
|
| 27 |
+
"what is machine learning": "Machine learning is a subset of artificial intelligence that allows systems to automatically learn and improve from data without being explicitly programmed.",
|
| 28 |
+
"how does the internet work": "The internet works through a global network of interconnected computers that communicate using standardized protocols to share information.",
|
| 29 |
+
"what is climate change": "Climate change refers to long-term shifts in global weather patterns and temperatures, largely attributed to human activities.",
|
| 30 |
+
"why renewable energy": "Renewable energy is important because it provides sustainable power sources that don't deplete natural resources and help reduce environmental impact."
|
|
|
|
| 31 |
}
|
| 32 |
|
| 33 |
+
for question, answer in basic_qa.items():
|
| 34 |
+
self.qa_patterns[question] = answer
|
| 35 |
+
words = question.split() + answer.split()
|
| 36 |
+
self.vocabulary.update(words)
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
+
self.total_tokens = sum(len(answer.split()) for answer in basic_qa.values())
|
| 39 |
+
print(f"π§ Initialized with {len(basic_qa)} Q&A patterns")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
+
def collect_training_data(self):
|
| 42 |
"""Collect training data from public sources"""
|
| 43 |
+
print("π·οΈ Collecting training data...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
+
collected_data = []
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
+
# Try to collect from news sources
|
| 48 |
+
news_data = self.fetch_news_data()
|
| 49 |
+
collected_data.extend(news_data)
|
| 50 |
|
| 51 |
+
# Process collected data
|
| 52 |
+
if collected_data:
|
| 53 |
+
self.process_collected_data(collected_data)
|
| 54 |
+
self.is_trained = True
|
| 55 |
+
return f"β
Training completed! Collected {len(collected_data)} articles and {self.total_tokens} total tokens."
|
| 56 |
+
else:
|
| 57 |
+
# Use fallback training
|
| 58 |
+
self.is_trained = True
|
| 59 |
+
return "β
Training completed using built-in knowledge patterns!"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
+
def fetch_news_data(self):
|
| 62 |
+
"""Fetch data from news sources"""
|
| 63 |
+
news_sources = [
|
| 64 |
+
"https://feeds.reuters.com/reuters/worldNews",
|
| 65 |
+
"https://feeds.bbci.co.uk/news/world/rss.xml"
|
| 66 |
+
]
|
| 67 |
+
|
| 68 |
+
articles = []
|
| 69 |
|
| 70 |
+
for source in news_sources:
|
| 71 |
try:
|
| 72 |
+
response = requests.get(source, timeout=5)
|
| 73 |
if response.status_code == 200:
|
| 74 |
root = ET.fromstring(response.content)
|
| 75 |
+
for item in root.findall(".//item")[:3]: # Limit to 3 per source
|
| 76 |
title = item.find("title")
|
| 77 |
+
if title is not None and title.text:
|
| 78 |
+
clean_title = re.sub(r'[^\w\s]', ' ', title.text).strip()
|
| 79 |
+
if len(clean_title) > 10:
|
| 80 |
+
articles.append(clean_title)
|
| 81 |
+
print(f"π° Collected {len(articles)} articles from {source}")
|
| 82 |
+
except Exception as e:
|
| 83 |
+
print(f"β οΈ Failed to collect from {source}: {str(e)}")
|
| 84 |
continue
|
| 85 |
|
| 86 |
+
return articles
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
+
def process_collected_data(self, data):
|
| 89 |
+
"""Process collected data into knowledge base"""
|
| 90 |
+
for text in data:
|
| 91 |
+
# Extract key topics and add to knowledge base
|
| 92 |
+
words = text.lower().split()
|
| 93 |
+
self.vocabulary.update(words)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
+
# Simple topic extraction
|
| 96 |
+
if any(word in text.lower() for word in ['technology', 'ai', 'computer']):
|
| 97 |
+
self.knowledge_base['technology'].append(text)
|
| 98 |
+
elif any(word in text.lower() for word in ['climate', 'environment', 'energy']):
|
| 99 |
+
self.knowledge_base['environment'].append(text)
|
| 100 |
+
elif any(word in text.lower() for word in ['economy', 'market', 'business']):
|
| 101 |
+
self.knowledge_base['economy'].append(text)
|
| 102 |
+
else:
|
| 103 |
+
self.knowledge_base['general'].append(text)
|
| 104 |
+
|
| 105 |
+
# Update token count
|
| 106 |
+
self.total_tokens += sum(len(text.split()) for text in data)
|
| 107 |
+
print(f"π Processed data into {len(self.knowledge_base)} knowledge categories")
|
| 108 |
|
| 109 |
def answer_question(self, question):
|
| 110 |
+
"""Answer a question using available knowledge"""
|
| 111 |
if not question.strip():
|
| 112 |
+
return "Hello! I'm an AI that learns from data. Ask me a question and I'll try to answer based on what I've learned!"
|
| 113 |
|
| 114 |
+
question_clean = question.lower().strip()
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
+
# Direct pattern matching
|
| 117 |
+
for pattern, answer in self.qa_patterns.items():
|
| 118 |
+
if self.calculate_similarity(question_clean, pattern) > 0.6:
|
| 119 |
+
return f"Based on my training: {answer}"
|
| 120 |
|
| 121 |
+
# Topic-based responses
|
| 122 |
+
topic_response = self.get_topic_response(question_clean)
|
| 123 |
+
if topic_response:
|
| 124 |
+
return topic_response
|
| 125 |
|
| 126 |
+
# Fallback response
|
| 127 |
+
return self.generate_fallback_response(question_clean)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
+
def calculate_similarity(self, text1, text2):
|
| 130 |
+
"""Calculate similarity between two texts"""
|
| 131 |
+
words1 = set(text1.split())
|
| 132 |
+
words2 = set(text2.split())
|
| 133 |
|
| 134 |
+
if not words1 or not words2:
|
| 135 |
+
return 0.0
|
|
|
|
| 136 |
|
| 137 |
+
intersection = len(words1.intersection(words2))
|
| 138 |
+
union = len(words1.union(words2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
+
return intersection / union if union > 0 else 0.0
|
| 141 |
|
| 142 |
+
def get_topic_response(self, question):
|
| 143 |
+
"""Get response based on topic matching"""
|
| 144 |
+
topic_keywords = {
|
| 145 |
+
'technology': ['technology', 'computer', 'ai', 'artificial', 'machine', 'internet', 'digital'],
|
| 146 |
+
'environment': ['climate', 'environment', 'energy', 'renewable', 'carbon', 'sustainability'],
|
| 147 |
+
'economy': ['economy', 'economic', 'market', 'business', 'finance', 'money'],
|
| 148 |
+
'education': ['education', 'learning', 'school', 'university', 'knowledge', 'study']
|
| 149 |
+
}
|
| 150 |
+
|
| 151 |
+
# Find matching topic
|
| 152 |
+
for topic, keywords in topic_keywords.items():
|
| 153 |
+
if any(keyword in question for keyword in keywords):
|
| 154 |
+
if topic in self.knowledge_base and self.knowledge_base[topic]:
|
| 155 |
+
return f"Based on recent information about {topic}: {self.knowledge_base[topic][0][:150]}..."
|
| 156 |
+
else:
|
| 157 |
+
return self.get_topic_template_response(topic, question)
|
| 158 |
|
| 159 |
+
return None
|
| 160 |
+
|
| 161 |
+
def get_topic_template_response(self, topic, question):
|
| 162 |
+
"""Get template response for a topic"""
|
| 163 |
templates = {
|
| 164 |
+
'technology': "Technology is rapidly evolving and transforming how we work, communicate, and solve problems. Modern technological advances include artificial intelligence, machine learning, and digital innovations.",
|
| 165 |
+
'environment': "Environmental issues like climate change require urgent attention. Solutions include renewable energy adoption, sustainable practices, and reduced carbon emissions.",
|
| 166 |
+
'economy': "Economic factors influence global markets, employment, and business growth. Understanding economic principles helps in making informed decisions.",
|
| 167 |
+
'education': "Education plays a crucial role in personal development and societal progress. It provides knowledge, skills, and opportunities for growth."
|
|
|
|
| 168 |
}
|
| 169 |
|
| 170 |
+
base_response = templates.get(topic, "This is an important topic that involves multiple factors and considerations.")
|
| 171 |
|
| 172 |
+
if '?' in question:
|
| 173 |
+
return f"Regarding your question about {topic}: {base_response}"
|
|
|
|
|
|
|
|
|
|
| 174 |
else:
|
| 175 |
+
return f"About {topic}: {base_response}"
|
| 176 |
+
|
| 177 |
+
def generate_fallback_response(self, question):
|
| 178 |
+
"""Generate fallback response for unknown questions"""
|
| 179 |
+
fallback_responses = [
|
| 180 |
+
"That's an interesting question. Based on general knowledge, this topic involves various factors that need consideration.",
|
| 181 |
+
"From what I understand, this subject has multiple aspects worth exploring further.",
|
| 182 |
+
"This is a complex topic that relates to several areas of knowledge and research.",
|
| 183 |
+
"Based on my training data, this question touches on important concepts that merit detailed analysis."
|
| 184 |
+
]
|
|
|
|
|
|
|
|
|
|
| 185 |
|
| 186 |
+
return random.choice(fallback_responses)
|
| 187 |
|
| 188 |
+
def get_system_status(self):
|
| 189 |
+
"""Get current system status"""
|
| 190 |
+
status = "π€ **SIMPLE Q&A AI STATUS**\n\n"
|
| 191 |
+
|
| 192 |
+
if self.is_trained:
|
| 193 |
+
status += "β
**System is trained and ready**\n\n"
|
| 194 |
+
else:
|
| 195 |
+
status += "β³ **System ready for training**\n\n"
|
| 196 |
+
|
| 197 |
+
status += "**π Statistics:**\n"
|
| 198 |
+
status += f"β’ **Total tokens processed:** {self.total_tokens:,}\n"
|
| 199 |
+
status += f"β’ **Vocabulary size:** {len(self.vocabulary):,} words\n"
|
| 200 |
+
status += f"β’ **Q&A patterns:** {len(self.qa_patterns)} direct patterns\n"
|
| 201 |
+
status += f"β’ **Knowledge categories:** {len(self.knowledge_base)}\n"
|
| 202 |
+
status += f"β’ **Training status:** {'Completed' if self.is_trained else 'Pending'}\n"
|
| 203 |
+
|
| 204 |
+
status += "\n**π― Capabilities:**\n"
|
| 205 |
+
status += "β’ Answers questions using pattern matching\n"
|
| 206 |
+
status += "β’ Learns from news articles and data\n"
|
| 207 |
+
status += "β’ Handles multiple topics and domains\n"
|
| 208 |
+
status += "β’ Provides fallback responses for unknown queries\n"
|
| 209 |
+
|
| 210 |
+
return status
|
| 211 |
|
| 212 |
+
# Initialize the AI system
|
| 213 |
+
ai_system = SimpleQAAI()
|
| 214 |
|
| 215 |
+
def start_training():
|
| 216 |
+
"""Start the training process"""
|
| 217 |
try:
|
| 218 |
+
result = ai_system.collect_training_data()
|
| 219 |
+
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
except Exception as e:
|
| 221 |
+
return f"β Training failed: {str(e)}"
|
| 222 |
|
| 223 |
+
def chat_function(message, history):
|
| 224 |
+
"""Handle chat interactions"""
|
| 225 |
+
if not message:
|
| 226 |
+
return history, ""
|
|
|
|
|
|
|
| 227 |
|
| 228 |
+
try:
|
| 229 |
+
response = ai_system.answer_question(message)
|
| 230 |
+
history.append([message, response])
|
| 231 |
+
return history, ""
|
| 232 |
+
except Exception as e:
|
| 233 |
+
error_response = f"Sorry, I encountered an error: {str(e)}"
|
| 234 |
+
history.append([message, error_response])
|
| 235 |
+
return history, ""
|
| 236 |
|
| 237 |
+
def refresh_status():
|
| 238 |
+
"""Refresh system status"""
|
| 239 |
+
return ai_system.get_system_status()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
|
| 241 |
# Create Gradio interface
|
| 242 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="Simple Q&A AI") as app:
|
| 243 |
|
| 244 |
gr.HTML("""
|
| 245 |
<div style="text-align: center; padding: 20px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; border-radius: 10px; margin-bottom: 20px;">
|
| 246 |
+
<h1>π€ Simple Question Answering AI</h1>
|
| 247 |
+
<p><b>Learn from data and answer questions intelligently</b></p>
|
| 248 |
+
<p>Stable β’ Fast β’ Reliable</p>
|
| 249 |
</div>
|
| 250 |
""")
|
| 251 |
|
| 252 |
with gr.Row():
|
| 253 |
+
with gr.Column(scale=3):
|
| 254 |
+
gr.Markdown("### π¬ Chat with AI")
|
| 255 |
|
| 256 |
chatbot = gr.Chatbot(
|
| 257 |
+
value=[],
|
| 258 |
+
label="AI Assistant",
|
| 259 |
+
height=400
|
| 260 |
)
|
| 261 |
|
| 262 |
msg_input = gr.Textbox(
|
| 263 |
+
label="Your Question",
|
| 264 |
placeholder="Ask me anything: What is AI? How does technology work?",
|
| 265 |
lines=2
|
| 266 |
)
|
| 267 |
|
| 268 |
with gr.Row():
|
| 269 |
send_btn = gr.Button("π¬ Send", variant="primary")
|
| 270 |
+
clear_btn = gr.Button("ποΈ Clear", variant="secondary")
|
| 271 |
|
| 272 |
with gr.Column(scale=1):
|
| 273 |
+
gr.Markdown("### βοΈ System Control")
|
| 274 |
|
| 275 |
+
status_box = gr.Textbox(
|
| 276 |
label="System Status",
|
| 277 |
+
value=ai_system.get_system_status(),
|
| 278 |
+
lines=16,
|
| 279 |
+
interactive=False
|
| 280 |
)
|
| 281 |
|
| 282 |
+
train_btn = gr.Button("π Start Training", variant="primary")
|
| 283 |
refresh_btn = gr.Button("π Refresh Status", variant="secondary")
|
| 284 |
|
| 285 |
# Example questions
|
|
|
|
| 287 |
examples=[
|
| 288 |
"What is artificial intelligence?",
|
| 289 |
"How do computers work?",
|
|
|
|
| 290 |
"Why is education important?",
|
|
|
|
|
|
|
| 291 |
"What is climate change?",
|
| 292 |
+
"How does the internet work?",
|
| 293 |
+
"What is machine learning?"
|
| 294 |
],
|
| 295 |
inputs=msg_input,
|
| 296 |
+
label="π Try these questions"
|
| 297 |
)
|
| 298 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 299 |
# Event handlers
|
| 300 |
send_btn.click(
|
| 301 |
+
fn=chat_function,
|
| 302 |
inputs=[msg_input, chatbot],
|
| 303 |
outputs=[chatbot, msg_input]
|
| 304 |
)
|
| 305 |
|
| 306 |
msg_input.submit(
|
| 307 |
+
fn=chat_function,
|
| 308 |
inputs=[msg_input, chatbot],
|
| 309 |
outputs=[chatbot, msg_input]
|
| 310 |
)
|
| 311 |
|
| 312 |
clear_btn.click(
|
| 313 |
+
fn=lambda: ([], ""),
|
| 314 |
outputs=[chatbot, msg_input]
|
| 315 |
)
|
| 316 |
|
| 317 |
train_btn.click(
|
| 318 |
+
fn=start_training,
|
| 319 |
+
outputs=[status_box]
|
| 320 |
)
|
| 321 |
|
| 322 |
refresh_btn.click(
|
| 323 |
+
fn=refresh_status,
|
| 324 |
+
outputs=[status_box]
|
| 325 |
)
|
| 326 |
|
| 327 |
+
# Launch the app
|
| 328 |
if __name__ == "__main__":
|
| 329 |
+
app.launch()
|