Spaces:
Sleeping
Sleeping
File size: 5,261 Bytes
068a50e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
# some code blocks are taken from https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/tree/main
import json
import os
from datetime import datetime, timezone
import gradio as gr
import pandas as pd
from src.css_html import custom_css
from src.text_content import ABOUT_TEXT, SUBMISSION_TEXT_3
from src.utils import (
AutoEvalColumn,
fields,
is_model_on_hub,
make_clickable_names,
)
df = pd.read_csv("data/code_eval_board.csv")
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
COLS_LITE = [
c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden
]
TYPES_LITE = [
c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden
]
def select_columns(df, columns):
always_here_cols = [
AutoEvalColumn.model.name,
]
# We use COLS to maintain sorting
filtered_df = df[
always_here_cols + [c for c in COLS if c in df.columns and c in columns]
]
return filtered_df
def filter_items(df, leaderboard_table, query):
if query == "all":
return df[leaderboard_table.columns]
else:
query = query[0]
filtered_df = df[df["T"].str.contains(query, na=False)]
return filtered_df[leaderboard_table.columns]
def search_table(df, leaderboard_table, query):
filtered_df = df[(df["Model"].str.contains(query, case=False))]
return filtered_df[leaderboard_table.columns]
df = make_clickable_names(df)
demo = gr.Blocks(css=custom_css)
with demo:
with gr.Row():
gr.Markdown(
"""<div style="text-align: center;"><h1> ESPnet-EZ Leaderboard for LibriSpeech-100h ASR1</span></h1></div>\
<br>\
<p>Users can use <code>reproduce</code> function to reproduce the numbers in ESPnet-EZ!</p>
""",
elem_classes="markdown-text",
)
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π Evaluation table", id=0):
with gr.Accordion("β‘οΈ See All Columns", open=False):
shown_columns = gr.CheckboxGroup(
choices=[
c
for c in COLS
if c
not in [
# AutoEvalColumn.dummy.name,
AutoEvalColumn.model.name,
]
],
value=[
c
for c in COLS_LITE
if c
not in [
# AutoEvalColumn.dummy.name,
AutoEvalColumn.model.name,
]
],
label="",
elem_id="column-select",
interactive=True,
)
# with gr.Column(min_width=780):
with gr.Row():
search_bar = gr.Textbox(
placeholder="π Search for your model and press ENTER...",
show_label=False,
elem_id="search-bar",
)
leaderboard_df = gr.components.Dataframe(
value=df[
[
AutoEvalColumn.model.name,
]
+ shown_columns.value
],
headers=[
AutoEvalColumn.model.name,
]
+ shown_columns.value,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
)
hidden_leaderboard_df = gr.components.Dataframe(
value=df,
headers=COLS,
datatype=["str" for _ in range(len(COLS))],
visible=False,
)
search_bar.submit(
search_table,
[hidden_leaderboard_df, leaderboard_df, search_bar],
leaderboard_df,
)
shown_columns.change(
select_columns,
[hidden_leaderboard_df, shown_columns],
leaderboard_df,
)
gr.Markdown(
"""
**Notes:**
- Win Rate represents how often a model outperforms other models in each language, averaged across all languages.
- The scores of instruction-tuned models might be significantly higher on humaneval-python than other languages. We use the instruction format of HumanEval. For other languages, we use base MultiPL-E prompts.
- For more details check the π About section.
- Models with a π΄ symbol represent external evaluation submission, this means that we didn't verify the results, you can find the author's submission under `Submission PR` field from `See All Columns` tab.
""",
elem_classes="markdown-text",
)
with gr.TabItem("π About", id=2):
gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text")
with gr.TabItem("Submit results π", id=3):
gr.Markdown(SUBMISSION_TEXT_3)
demo.launch()
|