|
import os |
|
import json |
|
import random |
|
from typing import Optional, Tuple, List, Dict, Union |
|
from concurrent.futures import ThreadPoolExecutor |
|
from tqdm import tqdm |
|
import torch |
|
import numpy as np |
|
from ftfy import fix_text |
|
from vllm import LLM, SamplingParams, RequestOutput |
|
|
|
from .rankllm import Prompt, PromptMode, RankLLM |
|
from .result import Result |
|
|
|
ALPH_START_IDX = ord('A') - 1 |
|
|
|
class RankListwiseOSLLM(RankLLM): |
|
def __init__( |
|
self, |
|
model: str, |
|
context_size: int = 4096, |
|
prompt_mode: PromptMode = PromptMode.RANK_GPT, |
|
num_few_shot_examples: int = 0, |
|
device: str = "cuda", |
|
num_gpus: int = 1, |
|
variable_passages: bool = False, |
|
window_size: int = 20, |
|
system_message: Optional[str] = None, |
|
batched: bool = False, |
|
rerank_type: str = "text", |
|
code_prompt_type: str = "docstring", |
|
) -> None: |
|
super().__init__(model, context_size, prompt_mode, num_few_shot_examples) |
|
self._device = device |
|
if self._device == "cuda": |
|
assert torch.cuda.is_available(), "CUDA is not available on this device" |
|
self.world_size = torch.cuda.device_count() |
|
print(f"WORLD SIZE: {self.world_size}") |
|
if self.world_size > 1: |
|
os.environ['NCCL_P2P_DISABLE']='1' |
|
os.environ['VLLM_WORKER_MULTIPROC_METHOD']='spawn' |
|
if prompt_mode != PromptMode.RANK_GPT: |
|
raise ValueError( |
|
f"Unsupported prompt mode: {prompt_mode}. Only RANK_GPT is supported." |
|
) |
|
|
|
self._llm = LLM( |
|
model=model, max_logprobs=30, |
|
enforce_eager=True, |
|
gpu_memory_utilization=0.9, |
|
max_model_len=2048, |
|
trust_remote_code=True, |
|
enable_chunked_prefill=True, |
|
tensor_parallel_size=1 |
|
) |
|
self._tokenizer = self._llm.get_tokenizer() |
|
self.system_message_supported = "system" in self._tokenizer.chat_template |
|
self._batched = batched |
|
self._variable_passages = variable_passages |
|
self._window_size = window_size |
|
self._system_message = system_message |
|
self._output_token_estimate = None |
|
self._rerank_type = rerank_type |
|
self._code_prompt_type = code_prompt_type |
|
|
|
if num_few_shot_examples > 0: |
|
with open("data/output_v2_aug_filtered.jsonl", "r") as json_file: |
|
self._examples = list(json_file)[1:-1] |
|
|
|
def run_llm( |
|
self, prompt: Prompt, current_window_size: Optional[int] = None |
|
) -> Tuple[str, int]: |
|
"""Run the language model with appropriate restrictions for code vs text reranking""" |
|
temp = 0. |
|
if current_window_size is None: |
|
current_window_size = self._window_size |
|
params = SamplingParams( |
|
temperature=temp, |
|
max_tokens=self.get_total_output_tokens(current_window_size), |
|
) |
|
output = self._llm.generate([prompt], sampling_params=params, use_tqdm=True)[0] |
|
output_text = output.outputs[0].text.replace(self._tokenizer.eos_token, "") |
|
self._history.append({ |
|
"prompt": prompt, |
|
"response": output_text, |
|
"second_run": {} |
|
}) |
|
|
|
return output_text, len(output_text) |
|
|
|
def run_llm_batched( |
|
self, |
|
prompts: List[Union[str, List[Dict[str, str]]]], |
|
current_window_size: Optional[int] = None, |
|
) -> List[Tuple[str, int]]: |
|
"""Run batched inference with appropriate restrictions for code vs text reranking""" |
|
|
|
temp = 0. |
|
if current_window_size is None: |
|
current_window_size = self._window_size |
|
max_new_tokens = self.get_total_output_tokens(current_window_size) |
|
min_new_tokens = self.get_total_output_tokens(current_window_size) |
|
params = SamplingParams( |
|
temperature=temp, |
|
max_tokens=max_new_tokens, |
|
min_tokens=min_new_tokens, |
|
) |
|
outputs = self._llm.generate(prompts, sampling_params=params, use_tqdm=True) |
|
return [ |
|
(output.outputs[0].text, len(output.outputs[0].token_ids)) |
|
for output in outputs |
|
] |
|
|
|
def num_output_tokens(self, current_window_size: Optional[int] = None) -> int: |
|
if current_window_size is None: |
|
current_window_size = self._window_size |
|
|
|
if self._output_token_estimate and self._window_size == current_window_size: |
|
return self._output_token_estimate |
|
|
|
token_str = " > ".join([f"[{chr(ALPH_START_IDX+i+1)}]" for i in range(current_window_size)]) |
|
|
|
_output_token_estimate = len(self._tokenizer.encode(token_str)) + 2 |
|
|
|
if self._window_size == current_window_size: |
|
self._output_token_estimate = _output_token_estimate |
|
return _output_token_estimate |
|
|
|
def get_total_output_tokens(self, current_window_size: Optional[int] = None) -> int: |
|
"""Get total number of output tokens""" |
|
base_tokens = self.num_output_tokens(current_window_size) |
|
return base_tokens |
|
|
|
def _add_prefix_prompt(self, query: str, num: int) -> str: |
|
if self._code_prompt_type == "docstring": |
|
return self._add_prefix_prompt_doc_string(query, num) |
|
else: |
|
raise ValueError(f"Invalid code_prompt_type: {self._code_prompt_type}") |
|
|
|
def _add_post_prompt(self, query: str, num: int) -> str: |
|
if self._code_prompt_type == "docstring": |
|
return self._add_post_prompt_doc_string(query, num) |
|
else: |
|
raise ValueError(f"Invalid code_prompt_type: {self._code_prompt_type}") |
|
|
|
def _add_prefix_prompt_doc_string(self, query: str, num: int) -> str: |
|
return f"I will provide you with {num} code snippets, each indicated by a numerical identifier []. Rank the code snippets based on their relevance to the functionality described by the following doc string: {query}.\n" |
|
|
|
def _add_post_prompt_doc_string(self, query: str, num: int) -> str: |
|
example_ordering = "[2] > [1]" if self._variable_passages else "[4] > [2]" |
|
return f"Doc String: {query}.\nRank the {num} code snippets above based on their relevance to the functionality described by the doc string. All the code snippets should be included and listed using identifiers, in descending order of relevance. The output format should be [] > [], e.g., {example_ordering}. Only respond with the ranking results, do not say any word or explain." |
|
|
|
def _add_prefix_prompt_github_issue(self, query: str, num: int) -> str: |
|
prefix_prompt = f"I will provide you with {num} code functions, each indicated by a numerical identifier []." |
|
prefix_prompt += f" Rank the code functions based on their relevance to contain the faults causing the GitHub issue: {query}.\n" |
|
return prefix_prompt |
|
|
|
def _add_few_shot_examples(self, conv): |
|
for _ in range(self._num_few_shot_examples): |
|
ex = random.choice(self._examples) |
|
obj = json.loads(ex) |
|
prompt = obj["conversations"][0]["value"] |
|
response = obj["conversations"][1]["value"] |
|
conv.append_message(conv.roles[0], prompt) |
|
conv.append_message(conv.roles[1], response) |
|
return conv |
|
|
|
def _add_few_shot_examples_messages(self, messages): |
|
for _ in range(self._num_few_shot_examples): |
|
ex = random.choice(self._examples) |
|
obj = json.loads(ex) |
|
prompt = obj["conversations"][0]["value"] |
|
response = obj["conversations"][1]["value"] |
|
messages.append({"role": "user", "content": prompt}) |
|
messages.append({"role": "assistant", "content": response}) |
|
return messages |
|
|
|
def create_prompt(self, result: Result, rank_start: int, rank_end: int) -> Tuple[str, int]: |
|
query = result.query |
|
max_query_len = self.get_num_tokens(query) |
|
num = len(result.hits[rank_start:rank_end]) |
|
max_doc_length = 1024 if (self._rerank_type == "code") else 300 |
|
min_doc_length = 300 |
|
while True: |
|
messages = list() |
|
if self._system_message and self.system_message_supported: |
|
messages.append({"role": "system", "content": self._system_message}) |
|
messages = self._add_few_shot_examples_messages(messages) |
|
query_tokens = self._tokenizer.tokenize(query)[:int(max_query_len)] |
|
truncated_query = self._tokenizer.convert_tokens_to_string(query_tokens) |
|
prefix = self._add_prefix_prompt(truncated_query, num) |
|
rank = 0 |
|
input_context = f"{prefix}\n" |
|
for hit in result.hits[rank_start:rank_end]: |
|
rank += 1 |
|
if self._rerank_type == "code": |
|
content = hit["content"] |
|
content = content.replace("Title: Content: ", "") |
|
tokenized_content = self._tokenizer.tokenize(content) |
|
content_tokens = tokenized_content[:int(max_doc_length)] |
|
truncated_content = self._tokenizer.convert_tokens_to_string(content_tokens) |
|
identifier = str(rank) |
|
input_context += f"[{identifier}] {self._replace_number(truncated_content)}\n" |
|
else: |
|
content = hit["content"].replace("Title: Content: ", "").strip() |
|
content = " ".join(content.split()[:max_doc_length]) |
|
identifier = str(rank) |
|
input_context += f"[{identifier}] {self._replace_number(content)}\n" |
|
input_context += self._add_post_prompt(truncated_query, num) |
|
messages.append({"role": "user", "content": input_context}) |
|
if self._system_message and not self.system_message_supported: |
|
messages[0]["content"] = self._system_message + "\n " + messages[0]["content"] |
|
prompt = self._tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
prompt = fix_text(prompt) |
|
num_tokens = self.get_num_tokens(prompt) |
|
if num_tokens <= self.max_tokens() - self.get_total_output_tokens(rank_end - rank_start): |
|
break |
|
else: |
|
prefix_len = len(self._tokenizer.encode(prefix)) |
|
if (len(query_tokens) + prefix_len) > (self.max_tokens() - min_doc_length *(rank_end - rank_start) - self.get_total_output_tokens(rank_end - rank_start)): |
|
|
|
offset = num_tokens - (self.max_tokens() - self.get_total_output_tokens(rank_end - rank_start)) |
|
max_query_len -= (offset//2 + 1) |
|
else: |
|
|
|
max_doc_length -= max( |
|
1, |
|
( |
|
num_tokens - self.max_tokens() + self.get_total_output_tokens(rank_end - rank_start) |
|
) // ((rank_end - rank_start) * 4), |
|
) |
|
return prompt, num_tokens |
|
|
|
def create_prompt_batched( |
|
self, |
|
results: List[Result], |
|
rank_start: int, |
|
rank_end: int, |
|
batch_size: int = 32, |
|
) -> List[Tuple[Prompt, int]]: |
|
def chunks(lst, n): |
|
"""Yield successive n-sized chunks from lst.""" |
|
for i in range(0, len(lst), n): |
|
yield lst[i : i + n] |
|
|
|
all_completed_prompts = [] |
|
|
|
with ThreadPoolExecutor() as executor: |
|
for batch in chunks(results, batch_size): |
|
completed_prompts = list( |
|
executor.map( |
|
lambda result: self.create_prompt(result, rank_start, rank_end), |
|
batch, |
|
) |
|
) |
|
all_completed_prompts.extend(completed_prompts) |
|
return all_completed_prompts |
|
|
|
def get_num_tokens(self, prompt: str) -> int: |
|
return len(self._tokenizer.encode(prompt)) |
|
|
|
def cost_per_1k_token(self, input_token: bool) -> float: |
|
return 0 |
|
|