Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -3,11 +3,9 @@
|
|
3 |
|
4 |
import gc
|
5 |
import json
|
6 |
-
import os
|
7 |
import re
|
8 |
import tempfile
|
9 |
from collections import OrderedDict
|
10 |
-
from functools import lru_cache
|
11 |
from importlib.resources import files
|
12 |
|
13 |
import click
|
@@ -19,7 +17,6 @@ import torchaudio
|
|
19 |
from cached_path import cached_path
|
20 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
21 |
|
22 |
-
|
23 |
try:
|
24 |
import spaces
|
25 |
|
@@ -35,16 +32,15 @@ def gpu_decorator(func):
|
|
35 |
return func
|
36 |
|
37 |
|
|
|
38 |
from f5_tts.infer.utils_infer import (
|
39 |
-
infer_process,
|
40 |
-
load_model,
|
41 |
load_vocoder,
|
|
|
42 |
preprocess_ref_audio_text,
|
|
|
43 |
remove_silence_for_generated_wav,
|
44 |
save_spectrogram,
|
45 |
-
tempfile_kwargs,
|
46 |
)
|
47 |
-
from f5_tts.model import DiT, UNetT
|
48 |
|
49 |
|
50 |
DEFAULT_TTS_MODEL = "F5-TTS_v1"
|
@@ -82,8 +78,6 @@ def load_custom(ckpt_path: str, vocab_path="", model_cfg=None):
|
|
82 |
vocab_path = str(cached_path(vocab_path))
|
83 |
if model_cfg is None:
|
84 |
model_cfg = json.loads(DEFAULT_TTS_MODEL_CFG[2])
|
85 |
-
elif isinstance(model_cfg, str):
|
86 |
-
model_cfg = json.loads(model_cfg)
|
87 |
return load_model(DiT, model_cfg, ckpt_path, vocab_file=vocab_path)
|
88 |
|
89 |
|
@@ -128,7 +122,6 @@ def load_text_from_file(file):
|
|
128 |
return gr.update(value=text)
|
129 |
|
130 |
|
131 |
-
@lru_cache(maxsize=1000) # NOTE. need to ensure params of infer() hashable
|
132 |
@gpu_decorator
|
133 |
def infer(
|
134 |
ref_audio_orig,
|
@@ -147,11 +140,7 @@ def infer(
|
|
147 |
return gr.update(), gr.update(), ref_text
|
148 |
|
149 |
# Set inference seed
|
150 |
-
if seed < 0 or seed > 2**31 - 1:
|
151 |
-
gr.Warning("Seed must in range 0 ~ 2147483647. Using random seed instead.")
|
152 |
-
seed = np.random.randint(0, 2**31 - 1)
|
153 |
torch.manual_seed(seed)
|
154 |
-
used_seed = seed
|
155 |
|
156 |
if not gen_text.strip():
|
157 |
gr.Warning("Please enter text to generate or upload a text file.")
|
@@ -167,7 +156,7 @@ def infer(
|
|
167 |
show_info("Loading E2-TTS model...")
|
168 |
E2TTS_ema_model = load_e2tts()
|
169 |
ema_model = E2TTS_ema_model
|
170 |
-
elif isinstance(model,
|
171 |
assert not USING_SPACES, "Only official checkpoints allowed in Spaces."
|
172 |
global custom_ema_model, pre_custom_path
|
173 |
if pre_custom_path != model[1]:
|
@@ -191,24 +180,28 @@ def infer(
|
|
191 |
|
192 |
# Remove silence
|
193 |
if remove_silence:
|
194 |
-
with tempfile.NamedTemporaryFile(suffix=".wav"
|
195 |
-
|
196 |
-
try:
|
197 |
-
sf.write(temp_path, final_wave, final_sample_rate)
|
198 |
remove_silence_for_generated_wav(f.name)
|
199 |
final_wave, _ = torchaudio.load(f.name)
|
200 |
-
finally:
|
201 |
-
os.unlink(temp_path)
|
202 |
final_wave = final_wave.squeeze().cpu().numpy()
|
203 |
|
204 |
# Save the spectrogram
|
205 |
-
with tempfile.NamedTemporaryFile(suffix=".png",
|
206 |
spectrogram_path = tmp_spectrogram.name
|
207 |
-
|
208 |
|
209 |
-
return (final_sample_rate, final_wave), spectrogram_path, ref_text
|
210 |
|
211 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
with gr.Blocks() as app_tts:
|
213 |
gr.Markdown("# Batched TTS")
|
214 |
ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
|
@@ -229,7 +222,9 @@ with gr.Blocks() as app_tts:
|
|
229 |
lines=2,
|
230 |
scale=4,
|
231 |
)
|
232 |
-
ref_text_file = gr.File(
|
|
|
|
|
233 |
with gr.Row():
|
234 |
randomize_seed = gr.Checkbox(
|
235 |
label="Randomize Seed",
|
@@ -284,21 +279,27 @@ with gr.Blocks() as app_tts:
|
|
284 |
nfe_slider,
|
285 |
speed_slider,
|
286 |
):
|
|
|
287 |
if randomize_seed:
|
288 |
-
|
|
|
|
|
|
|
|
|
|
|
289 |
|
290 |
-
audio_out, spectrogram_path, ref_text_out
|
291 |
ref_audio_input,
|
292 |
ref_text_input,
|
293 |
gen_text_input,
|
294 |
tts_model_choice,
|
295 |
remove_silence,
|
296 |
-
seed=
|
297 |
cross_fade_duration=cross_fade_duration_slider,
|
298 |
nfe_step=nfe_slider,
|
299 |
speed=speed_slider,
|
300 |
)
|
301 |
-
return audio_out, spectrogram_path, ref_text_out,
|
302 |
|
303 |
gen_text_file.upload(
|
304 |
load_text_from_file,
|
@@ -312,12 +313,6 @@ with gr.Blocks() as app_tts:
|
|
312 |
outputs=[ref_text_input],
|
313 |
)
|
314 |
|
315 |
-
ref_audio_input.clear(
|
316 |
-
lambda: [None, None],
|
317 |
-
None,
|
318 |
-
[ref_text_input, ref_text_file],
|
319 |
-
)
|
320 |
-
|
321 |
generate_btn.click(
|
322 |
basic_tts,
|
323 |
inputs=[
|
@@ -336,35 +331,26 @@ with gr.Blocks() as app_tts:
|
|
336 |
|
337 |
|
338 |
def parse_speechtypes_text(gen_text):
|
339 |
-
# Pattern to find {
|
340 |
-
pattern = r"(\
|
341 |
|
342 |
# Split the text by the pattern
|
343 |
tokens = re.split(pattern, gen_text)
|
344 |
|
345 |
segments = []
|
346 |
|
347 |
-
|
348 |
-
"name": "Regular",
|
349 |
-
"seed": -1,
|
350 |
-
"speed": 1.0,
|
351 |
-
}
|
352 |
|
353 |
for i in range(len(tokens)):
|
354 |
if i % 2 == 0:
|
355 |
# This is text
|
356 |
text = tokens[i].strip()
|
357 |
if text:
|
358 |
-
|
359 |
-
segments.append(current_type_dict)
|
360 |
else:
|
361 |
-
# This is
|
362 |
-
|
363 |
-
|
364 |
-
current_type_dict = json.loads(type_str)
|
365 |
-
except json.decoder.JSONDecodeError:
|
366 |
-
type_str = type_str[1:-1] # remove brace {}
|
367 |
-
current_type_dict = {"name": type_str, "seed": -1, "speed": 1.0}
|
368 |
|
369 |
return segments
|
370 |
|
@@ -382,48 +368,40 @@ with gr.Blocks() as app_multistyle:
|
|
382 |
with gr.Row():
|
383 |
gr.Markdown(
|
384 |
"""
|
385 |
-
**Example Input:**
|
386 |
-
{Regular} Hello, I'd like to order a sandwich please.
|
387 |
-
{Surprised} What do you mean you're out of bread?
|
388 |
-
{Sad} I really wanted a sandwich though...
|
389 |
-
{Angry} You know what, darn you and your little shop!
|
390 |
-
{Whisper} I'll just go back home and cry now.
|
391 |
{Shouting} Why me?!
|
392 |
"""
|
393 |
)
|
394 |
|
395 |
gr.Markdown(
|
396 |
"""
|
397 |
-
**Example Input 2:**
|
398 |
-
{
|
399 |
-
{
|
400 |
-
{
|
401 |
-
{
|
402 |
"""
|
403 |
)
|
404 |
|
405 |
gr.Markdown(
|
406 |
-
|
407 |
)
|
408 |
|
409 |
# Regular speech type (mandatory)
|
410 |
-
with gr.Row(
|
411 |
with gr.Column(scale=1, min_width=160):
|
412 |
regular_name = gr.Textbox(value="Regular", label="Speech Type Name")
|
413 |
regular_insert = gr.Button("Insert Label", variant="secondary")
|
414 |
with gr.Column(scale=3):
|
415 |
regular_audio = gr.Audio(label="Regular Reference Audio", type="filepath")
|
416 |
-
with gr.Column(scale=
|
417 |
-
regular_ref_text = gr.Textbox(label="Reference Text (Regular)", lines=
|
418 |
-
|
419 |
-
regular_seed_slider = gr.Slider(
|
420 |
-
show_label=False, minimum=-1, maximum=999, value=-1, step=1, info="Seed, -1 for random"
|
421 |
-
)
|
422 |
-
regular_speed_slider = gr.Slider(
|
423 |
-
show_label=False, minimum=0.3, maximum=2.0, value=1.0, step=0.1, info="Adjust the speed"
|
424 |
-
)
|
425 |
-
with gr.Column(scale=1, min_width=160):
|
426 |
-
regular_ref_text_file = gr.File(label="Load Reference Text from File (.txt)", file_types=[".txt"])
|
427 |
|
428 |
# Regular speech type (max 100)
|
429 |
max_speech_types = 100
|
@@ -432,54 +410,31 @@ with gr.Blocks() as app_multistyle:
|
|
432 |
speech_type_audios = [regular_audio]
|
433 |
speech_type_ref_texts = [regular_ref_text]
|
434 |
speech_type_ref_text_files = [regular_ref_text_file]
|
435 |
-
speech_type_seeds = [regular_seed_slider]
|
436 |
-
speech_type_speeds = [regular_speed_slider]
|
437 |
speech_type_delete_btns = [None]
|
438 |
speech_type_insert_btns = [regular_insert]
|
439 |
|
440 |
# Additional speech types (99 more)
|
441 |
for i in range(max_speech_types - 1):
|
442 |
-
with gr.Row(
|
443 |
with gr.Column(scale=1, min_width=160):
|
444 |
name_input = gr.Textbox(label="Speech Type Name")
|
|
|
445 |
insert_btn = gr.Button("Insert Label", variant="secondary")
|
446 |
-
delete_btn = gr.Button("Delete Type", variant="stop")
|
447 |
with gr.Column(scale=3):
|
448 |
audio_input = gr.Audio(label="Reference Audio", type="filepath")
|
449 |
-
with gr.Column(scale=
|
450 |
-
ref_text_input = gr.Textbox(label="Reference Text", lines=
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
)
|
455 |
-
speed_input = gr.Slider(
|
456 |
-
show_label=False, minimum=0.3, maximum=2.0, value=1.0, step=0.1, info="Adjust the speed"
|
457 |
-
)
|
458 |
-
with gr.Column(scale=1, min_width=160):
|
459 |
-
ref_text_file_input = gr.File(label="Load Reference Text from File (.txt)", file_types=[".txt"])
|
460 |
speech_type_rows.append(row)
|
461 |
speech_type_names.append(name_input)
|
462 |
speech_type_audios.append(audio_input)
|
463 |
speech_type_ref_texts.append(ref_text_input)
|
464 |
speech_type_ref_text_files.append(ref_text_file_input)
|
465 |
-
speech_type_seeds.append(seed_input)
|
466 |
-
speech_type_speeds.append(speed_input)
|
467 |
speech_type_delete_btns.append(delete_btn)
|
468 |
speech_type_insert_btns.append(insert_btn)
|
469 |
|
470 |
-
# Global logic for all speech types
|
471 |
-
for i in range(max_speech_types):
|
472 |
-
speech_type_audios[i].clear(
|
473 |
-
lambda: [None, None],
|
474 |
-
None,
|
475 |
-
[speech_type_ref_texts[i], speech_type_ref_text_files[i]],
|
476 |
-
)
|
477 |
-
speech_type_ref_text_files[i].upload(
|
478 |
-
load_text_from_file,
|
479 |
-
inputs=[speech_type_ref_text_files[i]],
|
480 |
-
outputs=[speech_type_ref_texts[i]],
|
481 |
-
)
|
482 |
-
|
483 |
# Button to add speech type
|
484 |
add_speech_type_btn = gr.Button("Add Speech Type")
|
485 |
|
@@ -515,6 +470,18 @@ with gr.Blocks() as app_multistyle:
|
|
515 |
speech_type_ref_text_files[i],
|
516 |
],
|
517 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
518 |
|
519 |
# Text input for the prompt
|
520 |
with gr.Row():
|
@@ -528,17 +495,10 @@ with gr.Blocks() as app_multistyle:
|
|
528 |
gen_text_file_multistyle = gr.File(label="Load Text to Generate from File (.txt)", file_types=[".txt"], scale=1)
|
529 |
|
530 |
def make_insert_speech_type_fn(index):
|
531 |
-
def insert_speech_type_fn(current_text, speech_type_name
|
532 |
current_text = current_text or ""
|
533 |
-
|
534 |
-
|
535 |
-
return current_text
|
536 |
-
speech_type_dict = {
|
537 |
-
"name": speech_type_name,
|
538 |
-
"seed": speech_type_seed,
|
539 |
-
"speed": speech_type_speed,
|
540 |
-
}
|
541 |
-
updated_text = current_text + json.dumps(speech_type_dict) + " "
|
542 |
return updated_text
|
543 |
|
544 |
return insert_speech_type_fn
|
@@ -547,24 +507,16 @@ with gr.Blocks() as app_multistyle:
|
|
547 |
insert_fn = make_insert_speech_type_fn(i)
|
548 |
insert_btn.click(
|
549 |
insert_fn,
|
550 |
-
inputs=[gen_text_input_multistyle, speech_type_names[i]
|
551 |
outputs=gen_text_input_multistyle,
|
552 |
)
|
553 |
|
554 |
-
with gr.Accordion("Advanced Settings", open=
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
value=False,
|
561 |
-
)
|
562 |
-
with gr.Column():
|
563 |
-
remove_silence_multistyle = gr.Checkbox(
|
564 |
-
label="Remove Silences",
|
565 |
-
info="Turn on to automatically detect and crop long silences.",
|
566 |
-
value=True,
|
567 |
-
)
|
568 |
|
569 |
# Generate button
|
570 |
generate_multistyle_btn = gr.Button("Generate Multi-Style Speech", variant="primary")
|
@@ -572,24 +524,6 @@ with gr.Blocks() as app_multistyle:
|
|
572 |
# Output audio
|
573 |
audio_output_multistyle = gr.Audio(label="Synthesized Audio")
|
574 |
|
575 |
-
# Used seed gallery
|
576 |
-
cherrypick_interface_multistyle = gr.Textbox(
|
577 |
-
label="Cherry-pick Interface",
|
578 |
-
lines=10,
|
579 |
-
max_lines=40,
|
580 |
-
show_copy_button=True,
|
581 |
-
interactive=False,
|
582 |
-
visible=False,
|
583 |
-
)
|
584 |
-
|
585 |
-
# Logic control to show/hide the cherrypick interface
|
586 |
-
show_cherrypick_multistyle.change(
|
587 |
-
lambda is_visible: gr.update(visible=is_visible),
|
588 |
-
show_cherrypick_multistyle,
|
589 |
-
cherrypick_interface_multistyle,
|
590 |
-
)
|
591 |
-
|
592 |
-
# Function to load text to generate from file
|
593 |
gen_text_file_multistyle.upload(
|
594 |
load_text_from_file,
|
595 |
inputs=[gen_text_file_multistyle],
|
@@ -623,60 +557,44 @@ with gr.Blocks() as app_multistyle:
|
|
623 |
|
624 |
# For each segment, generate speech
|
625 |
generated_audio_segments = []
|
626 |
-
|
627 |
-
inference_meta_data = ""
|
628 |
|
629 |
for segment in segments:
|
630 |
-
|
631 |
-
seed_input = segment["seed"]
|
632 |
-
speed = segment["speed"]
|
633 |
text = segment["text"]
|
634 |
|
635 |
-
if
|
636 |
-
|
637 |
else:
|
638 |
-
gr.Warning(f"Type {
|
639 |
-
|
640 |
|
641 |
try:
|
642 |
-
ref_audio = speech_types[
|
643 |
except KeyError:
|
644 |
-
gr.Warning(f"Please provide reference audio for type {
|
645 |
-
return [None] + [speech_types[
|
646 |
-
ref_text = speech_types[
|
647 |
|
648 |
-
|
649 |
-
|
650 |
|
651 |
-
# Generate
|
652 |
-
audio_out, _, ref_text_out
|
653 |
-
ref_audio,
|
654 |
-
|
655 |
-
text,
|
656 |
-
tts_model_choice,
|
657 |
-
remove_silence,
|
658 |
-
seed=seed_input,
|
659 |
-
cross_fade_duration=0,
|
660 |
-
speed=speed,
|
661 |
-
show_info=print, # no pull to top when generating
|
662 |
-
)
|
663 |
sr, audio_data = audio_out
|
664 |
|
665 |
generated_audio_segments.append(audio_data)
|
666 |
-
speech_types[
|
667 |
-
inference_meta_data += json.dumps(dict(name=name, seed=used_seed, speed=speed)) + f" {text}\n"
|
668 |
|
669 |
# Concatenate all audio segments
|
670 |
if generated_audio_segments:
|
671 |
final_audio_data = np.concatenate(generated_audio_segments)
|
672 |
-
return (
|
673 |
-
[(sr, final_audio_data)]
|
674 |
-
+ [speech_types[name]["ref_text"] for name in speech_types]
|
675 |
-
+ [inference_meta_data]
|
676 |
-
)
|
677 |
else:
|
678 |
gr.Warning("No audio generated.")
|
679 |
-
return [None] + [speech_types[
|
680 |
|
681 |
generate_multistyle_btn.click(
|
682 |
generate_multistyle_speech,
|
@@ -689,7 +607,7 @@ with gr.Blocks() as app_multistyle:
|
|
689 |
+ [
|
690 |
remove_silence_multistyle,
|
691 |
],
|
692 |
-
outputs=[audio_output_multistyle] + speech_type_ref_texts
|
693 |
)
|
694 |
|
695 |
# Validation function to disable Generate button if speech types are missing
|
@@ -706,7 +624,7 @@ with gr.Blocks() as app_multistyle:
|
|
706 |
|
707 |
# Parse the gen_text to get the speech types used
|
708 |
segments = parse_speechtypes_text(gen_text)
|
709 |
-
speech_types_in_text = set(segment["
|
710 |
|
711 |
# Check if all speech types in text are available
|
712 |
missing_speech_types = speech_types_in_text - speech_types_available
|
@@ -870,21 +788,27 @@ Have a conversation with an AI using your reference voice!
|
|
870 |
if not last_ai_response or conv_state[-1]["role"] != "assistant":
|
871 |
return None, ref_text, seed_input
|
872 |
|
|
|
873 |
if randomize_seed:
|
874 |
-
|
|
|
|
|
|
|
|
|
|
|
875 |
|
876 |
-
audio_result, _, ref_text_out
|
877 |
ref_audio,
|
878 |
ref_text,
|
879 |
last_ai_response,
|
880 |
tts_model_choice,
|
881 |
remove_silence,
|
882 |
-
seed=
|
883 |
cross_fade_duration=0.15,
|
884 |
speed=1.0,
|
885 |
show_info=print, # show_info=print no pull to top when generating
|
886 |
)
|
887 |
-
return audio_result, ref_text_out,
|
888 |
|
889 |
def clear_conversation():
|
890 |
"""Reset the conversation"""
|
@@ -930,16 +854,6 @@ Have a conversation with an AI using your reference voice!
|
|
930 |
)
|
931 |
|
932 |
|
933 |
-
with gr.Blocks() as app_credits:
|
934 |
-
gr.Markdown("""
|
935 |
-
# Credits
|
936 |
-
|
937 |
-
* [mrfakename](https://github.com/fakerybakery) for the original [online demo](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
|
938 |
-
* [RootingInLoad](https://github.com/RootingInLoad) for initial chunk generation and podcast app exploration
|
939 |
-
* [jpgallegoar](https://github.com/jpgallegoar) for multiple speech-type generation & voice chat
|
940 |
-
""")
|
941 |
-
|
942 |
-
|
943 |
with gr.Blocks() as app:
|
944 |
gr.Markdown(
|
945 |
f"""
|
@@ -975,7 +889,7 @@ If you're having issues, try converting your reference audio to WAV or MP3, clip
|
|
975 |
global tts_model_choice
|
976 |
if new_choice == "Custom": # override in case webpage is refreshed
|
977 |
custom_ckpt_path, custom_vocab_path, custom_model_cfg = load_last_used_custom()
|
978 |
-
tts_model_choice =
|
979 |
return (
|
980 |
gr.update(visible=True, value=custom_ckpt_path),
|
981 |
gr.update(visible=True, value=custom_vocab_path),
|
@@ -987,7 +901,7 @@ If you're having issues, try converting your reference audio to WAV or MP3, clip
|
|
987 |
|
988 |
def set_custom_model(custom_ckpt_path, custom_vocab_path, custom_model_cfg):
|
989 |
global tts_model_choice
|
990 |
-
tts_model_choice =
|
991 |
with open(last_used_custom, "w", encoding="utf-8") as f:
|
992 |
f.write(custom_ckpt_path + "\n" + custom_vocab_path + "\n" + custom_model_cfg + "\n")
|
993 |
|
@@ -1118,4 +1032,4 @@ if __name__ == "__main__":
|
|
1118 |
if not USING_SPACES:
|
1119 |
main()
|
1120 |
else:
|
1121 |
-
app.queue().launch()
|
|
|
3 |
|
4 |
import gc
|
5 |
import json
|
|
|
6 |
import re
|
7 |
import tempfile
|
8 |
from collections import OrderedDict
|
|
|
9 |
from importlib.resources import files
|
10 |
|
11 |
import click
|
|
|
17 |
from cached_path import cached_path
|
18 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
19 |
|
|
|
20 |
try:
|
21 |
import spaces
|
22 |
|
|
|
32 |
return func
|
33 |
|
34 |
|
35 |
+
from f5_tts.model import DiT, UNetT
|
36 |
from f5_tts.infer.utils_infer import (
|
|
|
|
|
37 |
load_vocoder,
|
38 |
+
load_model,
|
39 |
preprocess_ref_audio_text,
|
40 |
+
infer_process,
|
41 |
remove_silence_for_generated_wav,
|
42 |
save_spectrogram,
|
|
|
43 |
)
|
|
|
44 |
|
45 |
|
46 |
DEFAULT_TTS_MODEL = "F5-TTS_v1"
|
|
|
78 |
vocab_path = str(cached_path(vocab_path))
|
79 |
if model_cfg is None:
|
80 |
model_cfg = json.loads(DEFAULT_TTS_MODEL_CFG[2])
|
|
|
|
|
81 |
return load_model(DiT, model_cfg, ckpt_path, vocab_file=vocab_path)
|
82 |
|
83 |
|
|
|
122 |
return gr.update(value=text)
|
123 |
|
124 |
|
|
|
125 |
@gpu_decorator
|
126 |
def infer(
|
127 |
ref_audio_orig,
|
|
|
140 |
return gr.update(), gr.update(), ref_text
|
141 |
|
142 |
# Set inference seed
|
|
|
|
|
|
|
143 |
torch.manual_seed(seed)
|
|
|
144 |
|
145 |
if not gen_text.strip():
|
146 |
gr.Warning("Please enter text to generate or upload a text file.")
|
|
|
156 |
show_info("Loading E2-TTS model...")
|
157 |
E2TTS_ema_model = load_e2tts()
|
158 |
ema_model = E2TTS_ema_model
|
159 |
+
elif isinstance(model, list) and model[0] == "Custom":
|
160 |
assert not USING_SPACES, "Only official checkpoints allowed in Spaces."
|
161 |
global custom_ema_model, pre_custom_path
|
162 |
if pre_custom_path != model[1]:
|
|
|
180 |
|
181 |
# Remove silence
|
182 |
if remove_silence:
|
183 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
184 |
+
sf.write(f.name, final_wave, final_sample_rate)
|
|
|
|
|
185 |
remove_silence_for_generated_wav(f.name)
|
186 |
final_wave, _ = torchaudio.load(f.name)
|
|
|
|
|
187 |
final_wave = final_wave.squeeze().cpu().numpy()
|
188 |
|
189 |
# Save the spectrogram
|
190 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
|
191 |
spectrogram_path = tmp_spectrogram.name
|
192 |
+
save_spectrogram(combined_spectrogram, spectrogram_path)
|
193 |
|
194 |
+
return (final_sample_rate, final_wave), spectrogram_path, ref_text
|
195 |
|
196 |
|
197 |
+
with gr.Blocks() as app_credits:
|
198 |
+
gr.Markdown("""
|
199 |
+
# Credits
|
200 |
+
|
201 |
+
* [mrfakename](https://github.com/fakerybakery) for the original [online demo](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
|
202 |
+
* [RootingInLoad](https://github.com/RootingInLoad) for initial chunk generation and podcast app exploration
|
203 |
+
* [jpgallegoar](https://github.com/jpgallegoar) for multiple speech-type generation & voice chat
|
204 |
+
""")
|
205 |
with gr.Blocks() as app_tts:
|
206 |
gr.Markdown("# Batched TTS")
|
207 |
ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
|
|
|
222 |
lines=2,
|
223 |
scale=4,
|
224 |
)
|
225 |
+
ref_text_file = gr.File(
|
226 |
+
label="Load Reference Text from File (.txt)", file_types=[".txt"], scale=1, height=1
|
227 |
+
)
|
228 |
with gr.Row():
|
229 |
randomize_seed = gr.Checkbox(
|
230 |
label="Randomize Seed",
|
|
|
279 |
nfe_slider,
|
280 |
speed_slider,
|
281 |
):
|
282 |
+
# Determine the seed to use
|
283 |
if randomize_seed:
|
284 |
+
seed = np.random.randint(0, 2**31 - 1)
|
285 |
+
else:
|
286 |
+
seed = seed_input
|
287 |
+
if seed < 0 or seed > 2**31 - 1:
|
288 |
+
gr.Warning("Seed must in range 0 ~ 2147483647. Using random seed instead.")
|
289 |
+
seed = np.random.randint(0, 2**31 - 1)
|
290 |
|
291 |
+
audio_out, spectrogram_path, ref_text_out = infer(
|
292 |
ref_audio_input,
|
293 |
ref_text_input,
|
294 |
gen_text_input,
|
295 |
tts_model_choice,
|
296 |
remove_silence,
|
297 |
+
seed=seed,
|
298 |
cross_fade_duration=cross_fade_duration_slider,
|
299 |
nfe_step=nfe_slider,
|
300 |
speed=speed_slider,
|
301 |
)
|
302 |
+
return audio_out, spectrogram_path, ref_text_out, seed
|
303 |
|
304 |
gen_text_file.upload(
|
305 |
load_text_from_file,
|
|
|
313 |
outputs=[ref_text_input],
|
314 |
)
|
315 |
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
generate_btn.click(
|
317 |
basic_tts,
|
318 |
inputs=[
|
|
|
331 |
|
332 |
|
333 |
def parse_speechtypes_text(gen_text):
|
334 |
+
# Pattern to find {speechtype}
|
335 |
+
pattern = r"\{(.*?)\}"
|
336 |
|
337 |
# Split the text by the pattern
|
338 |
tokens = re.split(pattern, gen_text)
|
339 |
|
340 |
segments = []
|
341 |
|
342 |
+
current_style = "Regular"
|
|
|
|
|
|
|
|
|
343 |
|
344 |
for i in range(len(tokens)):
|
345 |
if i % 2 == 0:
|
346 |
# This is text
|
347 |
text = tokens[i].strip()
|
348 |
if text:
|
349 |
+
segments.append({"style": current_style, "text": text})
|
|
|
350 |
else:
|
351 |
+
# This is style
|
352 |
+
style = tokens[i].strip()
|
353 |
+
current_style = style
|
|
|
|
|
|
|
|
|
354 |
|
355 |
return segments
|
356 |
|
|
|
368 |
with gr.Row():
|
369 |
gr.Markdown(
|
370 |
"""
|
371 |
+
**Example Input:**
|
372 |
+
{Regular} Hello, I'd like to order a sandwich please.
|
373 |
+
{Surprised} What do you mean you're out of bread?
|
374 |
+
{Sad} I really wanted a sandwich though...
|
375 |
+
{Angry} You know what, darn you and your little shop!
|
376 |
+
{Whisper} I'll just go back home and cry now.
|
377 |
{Shouting} Why me?!
|
378 |
"""
|
379 |
)
|
380 |
|
381 |
gr.Markdown(
|
382 |
"""
|
383 |
+
**Example Input 2:**
|
384 |
+
{Speaker1_Happy} Hello, I'd like to order a sandwich please.
|
385 |
+
{Speaker2_Regular} Sorry, we're out of bread.
|
386 |
+
{Speaker1_Sad} I really wanted a sandwich though...
|
387 |
+
{Speaker2_Whisper} I'll give you the last one I was hiding.
|
388 |
"""
|
389 |
)
|
390 |
|
391 |
gr.Markdown(
|
392 |
+
"Upload different audio clips for each speech type. The first speech type is mandatory. You can add additional speech types by clicking the 'Add Speech Type' button."
|
393 |
)
|
394 |
|
395 |
# Regular speech type (mandatory)
|
396 |
+
with gr.Row() as regular_row:
|
397 |
with gr.Column(scale=1, min_width=160):
|
398 |
regular_name = gr.Textbox(value="Regular", label="Speech Type Name")
|
399 |
regular_insert = gr.Button("Insert Label", variant="secondary")
|
400 |
with gr.Column(scale=3):
|
401 |
regular_audio = gr.Audio(label="Regular Reference Audio", type="filepath")
|
402 |
+
with gr.Column(scale=4):
|
403 |
+
regular_ref_text = gr.Textbox(label="Reference Text (Regular)", lines=8, scale=3)
|
404 |
+
regular_ref_text_file = gr.File(label="Load Reference Text from File (.txt)", file_types=[".txt"], scale=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
405 |
|
406 |
# Regular speech type (max 100)
|
407 |
max_speech_types = 100
|
|
|
410 |
speech_type_audios = [regular_audio]
|
411 |
speech_type_ref_texts = [regular_ref_text]
|
412 |
speech_type_ref_text_files = [regular_ref_text_file]
|
|
|
|
|
413 |
speech_type_delete_btns = [None]
|
414 |
speech_type_insert_btns = [regular_insert]
|
415 |
|
416 |
# Additional speech types (99 more)
|
417 |
for i in range(max_speech_types - 1):
|
418 |
+
with gr.Row(visible=False) as row:
|
419 |
with gr.Column(scale=1, min_width=160):
|
420 |
name_input = gr.Textbox(label="Speech Type Name")
|
421 |
+
delete_btn = gr.Button("Delete Type", variant="secondary")
|
422 |
insert_btn = gr.Button("Insert Label", variant="secondary")
|
|
|
423 |
with gr.Column(scale=3):
|
424 |
audio_input = gr.Audio(label="Reference Audio", type="filepath")
|
425 |
+
with gr.Column(scale=4):
|
426 |
+
ref_text_input = gr.Textbox(label="Reference Text", lines=8, scale=3)
|
427 |
+
ref_text_file_input = gr.File(
|
428 |
+
label="Load Reference Text from File (.txt)", file_types=[".txt"], scale=1
|
429 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
430 |
speech_type_rows.append(row)
|
431 |
speech_type_names.append(name_input)
|
432 |
speech_type_audios.append(audio_input)
|
433 |
speech_type_ref_texts.append(ref_text_input)
|
434 |
speech_type_ref_text_files.append(ref_text_file_input)
|
|
|
|
|
435 |
speech_type_delete_btns.append(delete_btn)
|
436 |
speech_type_insert_btns.append(insert_btn)
|
437 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
438 |
# Button to add speech type
|
439 |
add_speech_type_btn = gr.Button("Add Speech Type")
|
440 |
|
|
|
470 |
speech_type_ref_text_files[i],
|
471 |
],
|
472 |
)
|
473 |
+
speech_type_ref_text_files[i].upload(
|
474 |
+
load_text_from_file,
|
475 |
+
inputs=[speech_type_ref_text_files[i]],
|
476 |
+
outputs=[speech_type_ref_texts[i]],
|
477 |
+
)
|
478 |
+
|
479 |
+
# Update regular speech type ref text file
|
480 |
+
regular_ref_text_file.upload(
|
481 |
+
load_text_from_file,
|
482 |
+
inputs=[regular_ref_text_file],
|
483 |
+
outputs=[regular_ref_text],
|
484 |
+
)
|
485 |
|
486 |
# Text input for the prompt
|
487 |
with gr.Row():
|
|
|
495 |
gen_text_file_multistyle = gr.File(label="Load Text to Generate from File (.txt)", file_types=[".txt"], scale=1)
|
496 |
|
497 |
def make_insert_speech_type_fn(index):
|
498 |
+
def insert_speech_type_fn(current_text, speech_type_name):
|
499 |
current_text = current_text or ""
|
500 |
+
speech_type_name = speech_type_name or "None"
|
501 |
+
updated_text = current_text + f"{{{speech_type_name}}} "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
502 |
return updated_text
|
503 |
|
504 |
return insert_speech_type_fn
|
|
|
507 |
insert_fn = make_insert_speech_type_fn(i)
|
508 |
insert_btn.click(
|
509 |
insert_fn,
|
510 |
+
inputs=[gen_text_input_multistyle, speech_type_names[i]],
|
511 |
outputs=gen_text_input_multistyle,
|
512 |
)
|
513 |
|
514 |
+
with gr.Accordion("Advanced Settings", open=False):
|
515 |
+
remove_silence_multistyle = gr.Checkbox(
|
516 |
+
label="Remove Silences",
|
517 |
+
info="Turn on to automatically detect and crop long silences.",
|
518 |
+
value=True,
|
519 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
520 |
|
521 |
# Generate button
|
522 |
generate_multistyle_btn = gr.Button("Generate Multi-Style Speech", variant="primary")
|
|
|
524 |
# Output audio
|
525 |
audio_output_multistyle = gr.Audio(label="Synthesized Audio")
|
526 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
527 |
gen_text_file_multistyle.upload(
|
528 |
load_text_from_file,
|
529 |
inputs=[gen_text_file_multistyle],
|
|
|
557 |
|
558 |
# For each segment, generate speech
|
559 |
generated_audio_segments = []
|
560 |
+
current_style = "Regular"
|
|
|
561 |
|
562 |
for segment in segments:
|
563 |
+
style = segment["style"]
|
|
|
|
|
564 |
text = segment["text"]
|
565 |
|
566 |
+
if style in speech_types:
|
567 |
+
current_style = style
|
568 |
else:
|
569 |
+
gr.Warning(f"Type {style} is not available, will use Regular as default.")
|
570 |
+
current_style = "Regular"
|
571 |
|
572 |
try:
|
573 |
+
ref_audio = speech_types[current_style]["audio"]
|
574 |
except KeyError:
|
575 |
+
gr.Warning(f"Please provide reference audio for type {current_style}.")
|
576 |
+
return [None] + [speech_types[style]["ref_text"] for style in speech_types]
|
577 |
+
ref_text = speech_types[current_style].get("ref_text", "")
|
578 |
|
579 |
+
# TODO. Attribute each type a unique seed (maybe also speed, pseudo-feature for #730 #813)
|
580 |
+
seed = np.random.randint(0, 2**31 - 1)
|
581 |
|
582 |
+
# Generate speech for this segment
|
583 |
+
audio_out, _, ref_text_out = infer(
|
584 |
+
ref_audio, ref_text, text, tts_model_choice, remove_silence, seed, 0, show_info=print
|
585 |
+
) # show_info=print no pull to top when generating
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
586 |
sr, audio_data = audio_out
|
587 |
|
588 |
generated_audio_segments.append(audio_data)
|
589 |
+
speech_types[current_style]["ref_text"] = ref_text_out
|
|
|
590 |
|
591 |
# Concatenate all audio segments
|
592 |
if generated_audio_segments:
|
593 |
final_audio_data = np.concatenate(generated_audio_segments)
|
594 |
+
return [(sr, final_audio_data)] + [speech_types[style]["ref_text"] for style in speech_types]
|
|
|
|
|
|
|
|
|
595 |
else:
|
596 |
gr.Warning("No audio generated.")
|
597 |
+
return [None] + [speech_types[style]["ref_text"] for style in speech_types]
|
598 |
|
599 |
generate_multistyle_btn.click(
|
600 |
generate_multistyle_speech,
|
|
|
607 |
+ [
|
608 |
remove_silence_multistyle,
|
609 |
],
|
610 |
+
outputs=[audio_output_multistyle] + speech_type_ref_texts,
|
611 |
)
|
612 |
|
613 |
# Validation function to disable Generate button if speech types are missing
|
|
|
624 |
|
625 |
# Parse the gen_text to get the speech types used
|
626 |
segments = parse_speechtypes_text(gen_text)
|
627 |
+
speech_types_in_text = set(segment["style"] for segment in segments)
|
628 |
|
629 |
# Check if all speech types in text are available
|
630 |
missing_speech_types = speech_types_in_text - speech_types_available
|
|
|
788 |
if not last_ai_response or conv_state[-1]["role"] != "assistant":
|
789 |
return None, ref_text, seed_input
|
790 |
|
791 |
+
# Determine the seed to use
|
792 |
if randomize_seed:
|
793 |
+
seed = np.random.randint(0, 2**31 - 1)
|
794 |
+
else:
|
795 |
+
seed = seed_input
|
796 |
+
if seed < 0 or seed > 2**31 - 1:
|
797 |
+
gr.Warning("Seed must in range 0 ~ 2147483647. Using random seed instead.")
|
798 |
+
seed = np.random.randint(0, 2**31 - 1)
|
799 |
|
800 |
+
audio_result, _, ref_text_out = infer(
|
801 |
ref_audio,
|
802 |
ref_text,
|
803 |
last_ai_response,
|
804 |
tts_model_choice,
|
805 |
remove_silence,
|
806 |
+
seed=seed,
|
807 |
cross_fade_duration=0.15,
|
808 |
speed=1.0,
|
809 |
show_info=print, # show_info=print no pull to top when generating
|
810 |
)
|
811 |
+
return audio_result, ref_text_out, seed
|
812 |
|
813 |
def clear_conversation():
|
814 |
"""Reset the conversation"""
|
|
|
854 |
)
|
855 |
|
856 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
857 |
with gr.Blocks() as app:
|
858 |
gr.Markdown(
|
859 |
f"""
|
|
|
889 |
global tts_model_choice
|
890 |
if new_choice == "Custom": # override in case webpage is refreshed
|
891 |
custom_ckpt_path, custom_vocab_path, custom_model_cfg = load_last_used_custom()
|
892 |
+
tts_model_choice = ["Custom", custom_ckpt_path, custom_vocab_path, json.loads(custom_model_cfg)]
|
893 |
return (
|
894 |
gr.update(visible=True, value=custom_ckpt_path),
|
895 |
gr.update(visible=True, value=custom_vocab_path),
|
|
|
901 |
|
902 |
def set_custom_model(custom_ckpt_path, custom_vocab_path, custom_model_cfg):
|
903 |
global tts_model_choice
|
904 |
+
tts_model_choice = ["Custom", custom_ckpt_path, custom_vocab_path, json.loads(custom_model_cfg)]
|
905 |
with open(last_used_custom, "w", encoding="utf-8") as f:
|
906 |
f.write(custom_ckpt_path + "\n" + custom_vocab_path + "\n" + custom_model_cfg + "\n")
|
907 |
|
|
|
1032 |
if not USING_SPACES:
|
1033 |
main()
|
1034 |
else:
|
1035 |
+
app.queue().launch()
|