mrdbourke's picture
Update app.py
34e9d62 verified
# 1. Import the required dependencies
import gradio as gr
import torch
import spaces # for GPU usage
from PIL import Image, ImageDraw, ImageFont
from transformers import AutoImageProcessor, AutoModelForObjectDetection
# Model path = mrdbourke/rt_detrv2_finetuned_trashify_box_detector_v1
# 2. Setup preprocessing and model functions - mrdbourke/rt_detrv2_finetuned_trashify_box_detector_v1
model_save_path = "mrdbourke/rt_detrv2_finetuned_trashify_box_detector_v1"
# Load image processor
image_processor = AutoImageProcessor.from_pretrained(model_save_path)
# Default size to 640x640 for simplicity, also handles strange shaped images
image_processor.size = {"height": 640,
"width": 640}
# Load the model
model = AutoModelForObjectDetection.from_pretrained(model_save_path)
# Setup the target device (use GPU if it's accessible)
# Note: if you want to use a GPU in your Space, you can use ZeroGPU: https://huggingface.co/docs/hub/en/spaces-zerogpu
device = "cuda" if torch.cuda.is_available() else "cpu"
model = model.to(device)
# Get the id2label dictionary from the model
id2label = model.config.id2label
# Setup a color dictionary for pretty drawings
color_dict = {
"bin": "green",
"trash": "blue",
"hand": "purple",
"trash_arm": "yellow",
"not_trash": "red",
"not_bin": "red",
"not_hand": "red"
}
# 3. Create a function predict_on_image
# Use a GPU on a target function
@spaces.GPU
def predict_on_image(image, conf_threshold):
model.eval()
# Make a prediction on target image
with torch.no_grad():
inputs = image_processor(images=[image],
return_tensors="pt")
model_outputs = model(**inputs.to(device))
# Get original size of image
# PIL.Image.size = width, height
# But post_process_object_detection requires height, width
target_sizes = torch.tensor([[image.size[1], image.size[0]]]) # -> [batch_size, height, width]
print(target_sizes)
# Post process the raw outputs from the model
results = image_processor.post_process_object_detection(model_outputs,
threshold=conf_threshold,
target_sizes=target_sizes)[0]
# Return all data items/objects to the CPU if they aren't already there
for key, value in results.items():
try:
results[key] = value.item().cpu() # can't get scalars as .item() so add try/except block
except:
results[key] = value.cpu()
### 4. Draw the predictions on the target image ###
draw = ImageDraw.Draw(image)
# Get a font to write on our image
font = ImageFont.load_default(size=20)
# Get a list of the detect class names
detected_class_names_text_labels = []
# Iterate through the predictions of the model and draw them on the target image
for box, score, label in zip(results["boxes"], results["scores"], results["labels"]):
# Create the coordinates
x, y, x2, y2 = tuple(box.tolist()) # XYXY
# Get the text-based label
label_name = id2label[label.item()]
targ_color = color_dict[label_name]
detected_class_names_text_labels.append(label_name)
# Draw the rectangle
draw.rectangle(xy=(x, y, x2, y2),
outline=targ_color,
width=3)
# Create the text to display on the box
text_string_to_show = f"{label_name} ({round(score.item(), 4)})"
# Draw the text on the image
draw.text(xy=(x, y),
text=text_string_to_show,
fill="white",
font=font)
# Remove the draw each time to make sure it doesn't get caught in memory
del draw
### 5. Create logic for outputting information message
# Setup set of target items to discover
target_items = {"trash", "bin", "hand"}
detected_items = set(detected_class_names_text_labels)
# If no items detected or bin, trash, hand not in detected items, return notification
if not detected_items & target_items:
return_string = (
f"No trash, bin or hand detected at confidence threshold {conf_threshold}. "
"Try another image or lowering the confidence threshold."
)
print(return_string)
return image, return_string
# If there are items missing, output what's missing for +1 point
missing_items = target_items - detected_items
if missing_items:
return_string = (
f"Detected the following items: {sorted(detected_items & target_items)}. "
f"Missing the following: {missing_items}. "
"In order to get +1 point, all target items must be detected."
)
print(return_string)
return image, return_string
# Final case, all items are detected
return_string = f"+1! Found the following items: {sorted(detected_items)}, thank you for cleaning up your local area!"
print(return_string)
return image, return_string
### 6. Setup the demo application to take in image/conf threshold, pass it through our function, show the output image/text
description = """
Help clean up your local area! Upload an image and get +1 if there is all of the following items detected: trash, bin, hand.
Model is a fine-tuned version of [RT-DETRv2](https://huggingface.co/docs/transformers/main/en/model_doc/rt_detr_v2#transformers.RTDetrV2Config) on the [Trashify dataset](https://huggingface.co/datasets/mrdbourke/trashify_manual_labelled_images).
See the full data loading and training code on [learnhuggingface.com](https://www.learnhuggingface.com/notebooks/hugging_face_object_detection_tutorial).
This version is v4 because the first three versions were using a different model and did not perform as well, see the [README](https://huggingface.co/spaces/mrdbourke/trashify_demo_v4/blob/main/README.md) for more.
"""
# Create the Gradio interface
demo = gr.Interface(
fn=predict_on_image,
inputs=[
gr.Image(type="pil", label="Target Input Image"),
gr.Slider(minimum=0, maximum=1, value=0.3, label="Confidence Threshold (set higher for more confident boxes)")
],
outputs=[
gr.Image(type="pil", label="Target Image Output"),
gr.Text(label="Text Output")
],
description=description,
title="🚮 Trashify Object Detection Demo V4 - Video",
examples=[
["trashify_examples/trashify_example_1.jpeg", 0.3],
["trashify_examples/trashify_example_2.jpeg", 0.3],
["trashify_examples/trashify_example_3.jpeg", 0.3],
],
cache_examples=True
)
# Launch demo
# demo.launch(debug=True) # run with debug=True to see errors in Google Colab
demo.launch()