File size: 2,777 Bytes
fa9a065
f4aacbc
802aea5
f4aacbc
 
 
 
802aea5
f4aacbc
 
fa9a065
 
 
 
f4aacbc
 
fa9a065
 
f4aacbc
 
 
fa9a065
f4aacbc
ec3bf01
f4aacbc
 
 
 
802aea5
 
 
 
 
 
 
f4aacbc
fa9a065
802aea5
 
fa9a065
802aea5
 
f4aacbc
802aea5
 
fa9a065
802aea5
fa9a065
 
 
 
802aea5
f4aacbc
fa9a065
 
f4aacbc
 
fa9a065
802aea5
f4aacbc
802aea5
f4aacbc
802aea5
f4aacbc
 
802aea5
 
 
fa9a065
f4aacbc
 
 
 
 
 
 
802aea5
f4aacbc
 
 
 
 
802aea5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
### 1. Imports and class names setup ###
import gradio as gr
import os
import torch

from model import create_effnetb2_model
from timeit import default_timer as timer
from typing import Tuple, Dict

# Setup class names
with open("class_names.txt", "r") as f:  # reading them in from class_names.txt
    class_names = [food_name.strip() for food_name in f.readlines()]

### 2. Model and transforms preparation ###

# Create model
effnetb2, effnetb2_transforms = create_effnetb2_model(
    num_classes=101,  # could also use len(class_names)
)

# Load saved weights
effnetb2.load_state_dict(
    torch.load(
        f="09_pretrained_effnetb2_feature_extractor_food101_20_percent.pth",
        map_location=torch.device("cpu"),  # load to CPU
    )
)

### 3. Predict function ###

# Create predict function
def predict(img) -> Tuple[Dict, float]:
    """Transforms and performs a prediction on img and returns prediction and time taken.
    """
    # Start the timer
    start_time = timer()

    # Transform the target image and add a batch dimension
    img = effnetb2_transforms(img).unsqueeze(0)

    # Put model into evaluation mode and turn on inference mode
    effnetb2.eval()
    with torch.inference_mode():
        # Pass the transformed image through the model and turn the prediction logits into prediction probabilities
        pred_probs = torch.softmax(effnetb2(img), dim=1)

    # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
    pred_labels_and_probs = {
        class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))
    }

    # Calculate the prediction time
    pred_time = round(timer() - start_time, 5)

    # Return the prediction dictionary and prediction time
    return pred_labels_and_probs, pred_time


### 4. Gradio app ###

# Create title, description and article strings
title = "FoodVision Big πŸ”πŸ‘"
description = "An EfficientNetB2 feature extractor computer vision model to classify images of food into [101 different classes](https://github.com/mrdbourke/pytorch-deep-learning/blob/main/extras/food101_class_names.txt)."
article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."

# Create examples list from "examples/" directory
example_list = [["examples/" + example] for example in os.listdir("examples")]

# Create Gradio interface
demo = gr.Interface(
    fn=predict,
    inputs=gr.Image(type="pil"),
    outputs=[
        gr.Label(num_top_classes=5, label="Predictions"),
        gr.Number(label="Prediction time (s)"),
    ],
    examples=example_list,
    title=title,
    description=description,
    article=article,
)

# Launch the app!
demo.launch()