Spaces:
Running
Running
Upload 41 files
Browse files- models/__init__.py +14 -0
- models/__pycache__/__init__.cpython-312.pyc +0 -0
- models/__pycache__/base.cpython-312.pyc +0 -0
- models/__pycache__/bert.cpython-312.pyc +0 -0
- models/__pycache__/dae.cpython-312.pyc +0 -0
- models/__pycache__/vae.cpython-312.pyc +0 -0
- models/base.py +15 -0
- models/bert.py +19 -0
- models/bert_modules/__init__.py +1 -0
- models/bert_modules/__pycache__/__init__.cpython-312.pyc +0 -0
- models/bert_modules/__pycache__/bert.cpython-312.pyc +0 -0
- models/bert_modules/__pycache__/transformer.cpython-312.pyc +0 -0
- models/bert_modules/attention/__init__.py +2 -0
- models/bert_modules/attention/__pycache__/__init__.cpython-312.pyc +0 -0
- models/bert_modules/attention/__pycache__/multi_head.cpython-312.pyc +0 -0
- models/bert_modules/attention/__pycache__/single.cpython-312.pyc +0 -0
- models/bert_modules/attention/multi_head.py +37 -0
- models/bert_modules/attention/single.py +25 -0
- models/bert_modules/bert.py +45 -0
- models/bert_modules/embedding/__init__.py +1 -0
- models/bert_modules/embedding/__pycache__/__init__.cpython-312.pyc +0 -0
- models/bert_modules/embedding/__pycache__/bert.cpython-312.pyc +0 -0
- models/bert_modules/embedding/__pycache__/position.cpython-312.pyc +0 -0
- models/bert_modules/embedding/__pycache__/token.cpython-312.pyc +0 -0
- models/bert_modules/embedding/bert.py +304 -0
- models/bert_modules/embedding/position.py +16 -0
- models/bert_modules/embedding/segment.py +6 -0
- models/bert_modules/embedding/token.py +6 -0
- models/bert_modules/transformer.py +31 -0
- models/bert_modules/utils/__init__.py +4 -0
- models/bert_modules/utils/__pycache__/__init__.cpython-312.pyc +0 -0
- models/bert_modules/utils/__pycache__/feed_forward.cpython-312.pyc +0 -0
- models/bert_modules/utils/__pycache__/gelu.cpython-312.pyc +0 -0
- models/bert_modules/utils/__pycache__/layer_norm.cpython-312.pyc +0 -0
- models/bert_modules/utils/__pycache__/sublayer.cpython-312.pyc +0 -0
- models/bert_modules/utils/feed_forward.py +16 -0
- models/bert_modules/utils/gelu.py +12 -0
- models/bert_modules/utils/layer_norm.py +17 -0
- models/bert_modules/utils/sublayer.py +18 -0
- models/dae.py +54 -0
- models/vae.py +69 -0
models/__init__.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .bert import BERTModel
|
2 |
+
from .dae import DAEModel
|
3 |
+
from .vae import VAEModel
|
4 |
+
|
5 |
+
MODELS = {
|
6 |
+
BERTModel.code(): BERTModel,
|
7 |
+
DAEModel.code(): DAEModel,
|
8 |
+
VAEModel.code(): VAEModel
|
9 |
+
}
|
10 |
+
|
11 |
+
|
12 |
+
def model_factory(args):
|
13 |
+
model = MODELS[args.model_code]
|
14 |
+
return model(args)
|
models/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (656 Bytes). View file
|
|
models/__pycache__/base.cpython-312.pyc
ADDED
Binary file (884 Bytes). View file
|
|
models/__pycache__/bert.cpython-312.pyc
ADDED
Binary file (1.31 kB). View file
|
|
models/__pycache__/dae.cpython-312.pyc
ADDED
Binary file (3.34 kB). View file
|
|
models/__pycache__/vae.cpython-312.pyc
ADDED
Binary file (4.03 kB). View file
|
|
models/base.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
|
3 |
+
from abc import *
|
4 |
+
|
5 |
+
|
6 |
+
class BaseModel(nn.Module, metaclass=ABCMeta):
|
7 |
+
def __init__(self, args):
|
8 |
+
super().__init__()
|
9 |
+
self.args = args
|
10 |
+
|
11 |
+
@classmethod
|
12 |
+
@abstractmethod
|
13 |
+
def code(cls):
|
14 |
+
pass
|
15 |
+
|
models/bert.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .base import BaseModel
|
2 |
+
from .bert_modules.bert import BERT
|
3 |
+
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
|
7 |
+
class BERTModel(BaseModel):
|
8 |
+
def __init__(self, args):
|
9 |
+
super().__init__(args)
|
10 |
+
self.bert = BERT(args)
|
11 |
+
self.out = nn.Linear(self.bert.hidden, args.num_items + 1)
|
12 |
+
|
13 |
+
@classmethod
|
14 |
+
def code(cls):
|
15 |
+
return 'bert'
|
16 |
+
|
17 |
+
def forward(self, x):
|
18 |
+
x = self.bert(x)
|
19 |
+
return self.out(x)
|
models/bert_modules/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
models/bert_modules/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (178 Bytes). View file
|
|
models/bert_modules/__pycache__/bert.cpython-312.pyc
ADDED
Binary file (3.08 kB). View file
|
|
models/bert_modules/__pycache__/transformer.cpython-312.pyc
ADDED
Binary file (2.26 kB). View file
|
|
models/bert_modules/attention/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .multi_head import MultiHeadedAttention
|
2 |
+
from .single import Attention
|
models/bert_modules/attention/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (287 Bytes). View file
|
|
models/bert_modules/attention/__pycache__/multi_head.cpython-312.pyc
ADDED
Binary file (2.44 kB). View file
|
|
models/bert_modules/attention/__pycache__/single.cpython-312.pyc
ADDED
Binary file (1.31 kB). View file
|
|
models/bert_modules/attention/multi_head.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
from .single import Attention
|
3 |
+
|
4 |
+
|
5 |
+
class MultiHeadedAttention(nn.Module):
|
6 |
+
"""
|
7 |
+
Take in model size and number of heads.
|
8 |
+
"""
|
9 |
+
|
10 |
+
def __init__(self, h, d_model, dropout=0.1):
|
11 |
+
super().__init__()
|
12 |
+
assert d_model % h == 0
|
13 |
+
|
14 |
+
# We assume d_v always equals d_k
|
15 |
+
self.d_k = d_model // h
|
16 |
+
self.h = h
|
17 |
+
|
18 |
+
self.linear_layers = nn.ModuleList([nn.Linear(d_model, d_model) for _ in range(3)])
|
19 |
+
self.output_linear = nn.Linear(d_model, d_model)
|
20 |
+
self.attention = Attention()
|
21 |
+
|
22 |
+
self.dropout = nn.Dropout(p=dropout)
|
23 |
+
|
24 |
+
def forward(self, query, key, value, mask=None):
|
25 |
+
batch_size = query.size(0)
|
26 |
+
|
27 |
+
# 1) Do all the linear projections in batch from d_model => h x d_k
|
28 |
+
query, key, value = [l(x).view(batch_size, -1, self.h, self.d_k).transpose(1, 2)
|
29 |
+
for l, x in zip(self.linear_layers, (query, key, value))]
|
30 |
+
|
31 |
+
# 2) Apply attention on all the projected vectors in batch.
|
32 |
+
x, attn = self.attention(query, key, value, mask=mask, dropout=self.dropout)
|
33 |
+
|
34 |
+
# 3) "Concat" using a view and apply a final linear.
|
35 |
+
x = x.transpose(1, 2).contiguous().view(batch_size, -1, self.h * self.d_k)
|
36 |
+
|
37 |
+
return self.output_linear(x)
|
models/bert_modules/attention/single.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import torch
|
4 |
+
|
5 |
+
import math
|
6 |
+
|
7 |
+
|
8 |
+
class Attention(nn.Module):
|
9 |
+
"""
|
10 |
+
Compute 'Scaled Dot Product Attention
|
11 |
+
"""
|
12 |
+
|
13 |
+
def forward(self, query, key, value, mask=None, dropout=None):
|
14 |
+
scores = torch.matmul(query, key.transpose(-2, -1)) \
|
15 |
+
/ math.sqrt(query.size(-1))
|
16 |
+
|
17 |
+
if mask is not None:
|
18 |
+
scores = scores.masked_fill(mask == 0, -1e9)
|
19 |
+
|
20 |
+
p_attn = F.softmax(scores, dim=-1)
|
21 |
+
|
22 |
+
if dropout is not None:
|
23 |
+
p_attn = dropout(p_attn)
|
24 |
+
|
25 |
+
return torch.matmul(p_attn, value), p_attn
|
models/bert_modules/bert.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch import nn as nn
|
2 |
+
|
3 |
+
from models.bert_modules.embedding import BERTEmbedding
|
4 |
+
from models.bert_modules.transformer import TransformerBlock
|
5 |
+
from utils import fix_random_seed_as
|
6 |
+
|
7 |
+
from pathlib import Path
|
8 |
+
import pickle
|
9 |
+
class BERT(nn.Module):
|
10 |
+
def __init__(self, args):
|
11 |
+
super().__init__()
|
12 |
+
|
13 |
+
fix_random_seed_as(args.model_init_seed)
|
14 |
+
# self.init_weights()
|
15 |
+
|
16 |
+
max_len = args.bert_max_len
|
17 |
+
num_items = args.num_items
|
18 |
+
n_layers = args.bert_num_blocks
|
19 |
+
heads = args.bert_num_heads
|
20 |
+
vocab_size = num_items + 2
|
21 |
+
hidden = args.bert_hidden_units
|
22 |
+
self.hidden = hidden
|
23 |
+
dropout = args.bert_dropout
|
24 |
+
|
25 |
+
# embedding for BERT, sum of positional, segment, token embeddings
|
26 |
+
self.embedding = BERTEmbedding(vocab_size=vocab_size, embed_size=self.hidden, max_len=max_len, dropout=dropout)
|
27 |
+
|
28 |
+
# multi-layers transformer blocks, deep network
|
29 |
+
self.transformer_blocks = nn.ModuleList(
|
30 |
+
[TransformerBlock(hidden, heads, hidden * 4, dropout) for _ in range(n_layers)])
|
31 |
+
|
32 |
+
def forward(self, x):
|
33 |
+
mask = (x > 0).unsqueeze(1).repeat(1, x.size(1), 1).unsqueeze(1)
|
34 |
+
|
35 |
+
# embedding the indexed sequence to sequence of vectors
|
36 |
+
x = self.embedding(x)
|
37 |
+
|
38 |
+
# running over multiple transformer blocks
|
39 |
+
for transformer in self.transformer_blocks:
|
40 |
+
x = transformer.forward(x, mask)
|
41 |
+
|
42 |
+
return x
|
43 |
+
|
44 |
+
def init_weights(self):
|
45 |
+
pass
|
models/bert_modules/embedding/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .bert import BERTEmbedding
|
models/bert_modules/embedding/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (233 Bytes). View file
|
|
models/bert_modules/embedding/__pycache__/bert.cpython-312.pyc
ADDED
Binary file (29.8 kB). View file
|
|
models/bert_modules/embedding/__pycache__/position.cpython-312.pyc
ADDED
Binary file (1.19 kB). View file
|
|
models/bert_modules/embedding/__pycache__/token.cpython-312.pyc
ADDED
Binary file (729 Bytes). View file
|
|
models/bert_modules/embedding/bert.py
ADDED
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import pickle
|
5 |
+
import json
|
6 |
+
import threading
|
7 |
+
from pathlib import Path
|
8 |
+
import torch.nn as nn
|
9 |
+
from .token import TokenEmbedding
|
10 |
+
from .position import PositionalEmbedding
|
11 |
+
import time
|
12 |
+
from pathlib import Path
|
13 |
+
from torch.nn.utils.rnn import pad_sequence
|
14 |
+
import pickle
|
15 |
+
import json
|
16 |
+
import os
|
17 |
+
|
18 |
+
class BERTEmbedding(nn.Module):
|
19 |
+
_mappings_cache = None
|
20 |
+
_cache_lock = threading.Lock()
|
21 |
+
|
22 |
+
@classmethod
|
23 |
+
def _load_mappings(cls):
|
24 |
+
if cls._mappings_cache is None:
|
25 |
+
with cls._cache_lock:
|
26 |
+
if cls._mappings_cache is None: # Double-checked locking
|
27 |
+
try:
|
28 |
+
|
29 |
+
main_dir = os.getcwd()
|
30 |
+
|
31 |
+
relative_path_dataset = "Data/preprocessed/AnimeRatings_min_rating7-min_uc10-min_sc10-splitleave_one_out/dataset.pkl"
|
32 |
+
relative_path_genres = "Data/AnimeRatings/id_to_genreids.json"
|
33 |
+
|
34 |
+
full_path_dataset = Path(main_dir) / relative_path_dataset
|
35 |
+
full_path_genres = Path(main_dir) / relative_path_genres
|
36 |
+
|
37 |
+
|
38 |
+
with full_path_dataset.open('rb') as f:
|
39 |
+
dataset_smap = pickle.load(f)["smap"]
|
40 |
+
|
41 |
+
with full_path_genres.open('rb') as f:
|
42 |
+
id_to_genres = json.load(f)
|
43 |
+
|
44 |
+
cls._mappings_cache = {
|
45 |
+
'dataset_smap': dataset_smap,
|
46 |
+
'id_to_genres': id_to_genres
|
47 |
+
}
|
48 |
+
|
49 |
+
except Exception as e:
|
50 |
+
print(f"Warning: Could not load mappings: {e}")
|
51 |
+
cls._mappings_cache = {
|
52 |
+
'dataset_smap': {},
|
53 |
+
'id_to_genres': {}
|
54 |
+
}
|
55 |
+
return cls._mappings_cache
|
56 |
+
|
57 |
+
def __init__(self, vocab_size, embed_size, max_len, dropout=0.1, multi_genre=True, max_genres_per_anime=5):
|
58 |
+
super().__init__()
|
59 |
+
|
60 |
+
mappings = self._load_mappings()
|
61 |
+
dataset_smap = mappings['dataset_smap']
|
62 |
+
id_to_genres = mappings['id_to_genres']
|
63 |
+
|
64 |
+
self.multi_genre = multi_genre
|
65 |
+
self.max_genres_per_anime = max_genres_per_anime
|
66 |
+
|
67 |
+
all_genres = set()
|
68 |
+
for anime_id, genres in id_to_genres.items():
|
69 |
+
all_genres.update(genres)
|
70 |
+
|
71 |
+
max_genre_id = max(all_genres) if all_genres else 0
|
72 |
+
self.num_genres = max_genre_id + 1
|
73 |
+
|
74 |
+
print(f"Detected {self.num_genres} unique genres (max_id: {max_genre_id})")
|
75 |
+
|
76 |
+
self.vocab_size = vocab_size
|
77 |
+
|
78 |
+
if multi_genre:
|
79 |
+
self._create_multi_genre_mapping(dataset_smap, id_to_genres, vocab_size)
|
80 |
+
else:
|
81 |
+
self._create_single_genre_mapping(dataset_smap, id_to_genres, vocab_size)
|
82 |
+
|
83 |
+
self.token = TokenEmbedding(vocab_size=vocab_size, embed_size=embed_size)
|
84 |
+
self.genre_embed = nn.Embedding(num_embeddings=self.num_genres, embedding_dim=embed_size, padding_idx=0)
|
85 |
+
|
86 |
+
if multi_genre:
|
87 |
+
self.fusion_layer = nn.Sequential(
|
88 |
+
nn.Linear(embed_size * 2, embed_size),
|
89 |
+
nn.LayerNorm(embed_size),
|
90 |
+
nn.ReLU()
|
91 |
+
)
|
92 |
+
|
93 |
+
self.genre_aggregation = nn.Parameter(torch.ones(max_genres_per_anime) / max_genres_per_anime)
|
94 |
+
self.genre_attention = nn.MultiheadAttention(embed_size, num_heads=4, batch_first=True)
|
95 |
+
else:
|
96 |
+
self.fusion_layer = nn.Sequential(
|
97 |
+
nn.Linear(embed_size * 2, embed_size),
|
98 |
+
nn.LayerNorm(embed_size),
|
99 |
+
nn.ReLU()
|
100 |
+
)
|
101 |
+
|
102 |
+
self.dropout = nn.Dropout(p=dropout)
|
103 |
+
self.embed_size = embed_size
|
104 |
+
|
105 |
+
self._genre_cache = {}
|
106 |
+
self._cache_lock = threading.Lock()
|
107 |
+
|
108 |
+
def _create_single_genre_mapping(self, dataset_smap, id_to_genres, vocab_size):
|
109 |
+
token_to_genre = {}
|
110 |
+
for anime_id, token_id in dataset_smap.items():
|
111 |
+
if token_id < vocab_size:
|
112 |
+
genre_list = id_to_genres.get(str(anime_id), [0])
|
113 |
+
genre_id = genre_list[0] if genre_list else 0
|
114 |
+
if genre_id >= self.num_genres:
|
115 |
+
print(f"Warning: Genre ID {genre_id} >= {self.num_genres}, setting to 0")
|
116 |
+
genre_id = 0
|
117 |
+
token_to_genre[token_id] = genre_id
|
118 |
+
|
119 |
+
if token_to_genre:
|
120 |
+
token_ids = torch.tensor(list(token_to_genre.keys()), dtype=torch.long)
|
121 |
+
genre_ids = torch.tensor(list(token_to_genre.values()), dtype=torch.long)
|
122 |
+
|
123 |
+
self.register_buffer('token_ids', token_ids)
|
124 |
+
self.register_buffer('genre_ids', genre_ids)
|
125 |
+
self.has_mappings = True
|
126 |
+
else:
|
127 |
+
self.register_buffer('token_ids', torch.empty(0, dtype=torch.long))
|
128 |
+
self.register_buffer('genre_ids', torch.empty(0, dtype=torch.long))
|
129 |
+
self.has_mappings = False
|
130 |
+
|
131 |
+
def _create_multi_genre_mapping(self, dataset_smap, id_to_genres, vocab_size):
|
132 |
+
token_to_genres = {}
|
133 |
+
for anime_id, token_id in dataset_smap.items():
|
134 |
+
if token_id < vocab_size:
|
135 |
+
genre_list = id_to_genres.get(str(anime_id), [0])
|
136 |
+
|
137 |
+
valid_genres = []
|
138 |
+
for genre_id in genre_list:
|
139 |
+
if genre_id >= self.num_genres:
|
140 |
+
print(f"Warning: Genre ID {genre_id} >= {self.num_genres}, setting to 0")
|
141 |
+
genre_id = 0
|
142 |
+
valid_genres.append(genre_id)
|
143 |
+
|
144 |
+
if len(valid_genres) < self.max_genres_per_anime:
|
145 |
+
valid_genres.extend([0] * (self.max_genres_per_anime - len(valid_genres)))
|
146 |
+
else:
|
147 |
+
valid_genres = valid_genres[:self.max_genres_per_anime]
|
148 |
+
|
149 |
+
token_to_genres[token_id] = valid_genres
|
150 |
+
|
151 |
+
if token_to_genres:
|
152 |
+
token_ids = torch.tensor(list(token_to_genres.keys()), dtype=torch.long)
|
153 |
+
genre_ids = torch.tensor(list(token_to_genres.values()), dtype=torch.long)
|
154 |
+
|
155 |
+
self.register_buffer('token_ids', token_ids)
|
156 |
+
self.register_buffer('genre_ids', genre_ids)
|
157 |
+
self.has_mappings = True
|
158 |
+
else:
|
159 |
+
self.register_buffer('token_ids', torch.empty(0, dtype=torch.long))
|
160 |
+
self.register_buffer('genre_ids', torch.empty(0, self.max_genres_per_anime, dtype=torch.long))
|
161 |
+
self.has_mappings = False
|
162 |
+
|
163 |
+
def _get_single_genre_mapping(self, sequence):
|
164 |
+
"""Original single genre mapping with improved bounds checking"""
|
165 |
+
batch_size, seq_len = sequence.shape
|
166 |
+
device = sequence.device
|
167 |
+
|
168 |
+
if not self.has_mappings:
|
169 |
+
return torch.zeros_like(sequence)
|
170 |
+
|
171 |
+
sequence = torch.clamp(sequence, 0, self.vocab_size - 1)
|
172 |
+
|
173 |
+
genre_sequence = torch.zeros_like(sequence)
|
174 |
+
flat_sequence = sequence.flatten()
|
175 |
+
flat_genre = torch.zeros_like(flat_sequence)
|
176 |
+
|
177 |
+
token_mask = torch.isin(flat_sequence, self.token_ids)
|
178 |
+
|
179 |
+
if token_mask.any():
|
180 |
+
valid_tokens = flat_sequence[token_mask]
|
181 |
+
|
182 |
+
with self._cache_lock:
|
183 |
+
cache_key = (device, len(self.token_ids))
|
184 |
+
if cache_key not in self._genre_cache:
|
185 |
+
sorted_indices = torch.argsort(self.token_ids)
|
186 |
+
self._genre_cache[cache_key] = {
|
187 |
+
'sorted_tokens': self.token_ids[sorted_indices],
|
188 |
+
'sorted_genres': self.genre_ids[sorted_indices]
|
189 |
+
}
|
190 |
+
|
191 |
+
cached_data = self._genre_cache[cache_key]
|
192 |
+
|
193 |
+
indices = torch.searchsorted(cached_data['sorted_tokens'], valid_tokens)
|
194 |
+
indices = torch.clamp(indices, 0, len(cached_data['sorted_tokens']) - 1)
|
195 |
+
exact_matches = cached_data['sorted_tokens'][indices] == valid_tokens
|
196 |
+
|
197 |
+
genre_values = torch.where(
|
198 |
+
exact_matches,
|
199 |
+
cached_data['sorted_genres'][indices],
|
200 |
+
torch.tensor(0, device=device, dtype=self.genre_ids.dtype)
|
201 |
+
)
|
202 |
+
|
203 |
+
flat_genre[token_mask] = genre_values
|
204 |
+
|
205 |
+
return flat_genre.view(batch_size, seq_len)
|
206 |
+
|
207 |
+
def _get_multi_genre_mapping(self, sequence):
|
208 |
+
"""Get multiple genres for each anime in sequence with bounds checking"""
|
209 |
+
batch_size, seq_len = sequence.shape
|
210 |
+
device = sequence.device
|
211 |
+
|
212 |
+
if not self.has_mappings:
|
213 |
+
return torch.zeros(batch_size, seq_len, self.max_genres_per_anime, device=device, dtype=torch.long)
|
214 |
+
|
215 |
+
sequence = torch.clamp(sequence, 0, self.vocab_size - 1)
|
216 |
+
|
217 |
+
genre_sequences = torch.zeros(batch_size, seq_len, self.max_genres_per_anime, device=device, dtype=torch.long)
|
218 |
+
|
219 |
+
flat_sequence = sequence.flatten()
|
220 |
+
flat_genres = torch.zeros(len(flat_sequence), self.max_genres_per_anime, device=device, dtype=torch.long)
|
221 |
+
|
222 |
+
token_mask = torch.isin(flat_sequence, self.token_ids)
|
223 |
+
|
224 |
+
if token_mask.any():
|
225 |
+
valid_tokens = flat_sequence[token_mask]
|
226 |
+
|
227 |
+
with self._cache_lock:
|
228 |
+
cache_key = (device, len(self.token_ids), 'multi')
|
229 |
+
if cache_key not in self._genre_cache:
|
230 |
+
sorted_indices = torch.argsort(self.token_ids)
|
231 |
+
self._genre_cache[cache_key] = {
|
232 |
+
'sorted_tokens': self.token_ids[sorted_indices],
|
233 |
+
'sorted_genres': self.genre_ids[sorted_indices] # Shape: (num_tokens, max_genres_per_anime)
|
234 |
+
}
|
235 |
+
|
236 |
+
cached_data = self._genre_cache[cache_key]
|
237 |
+
|
238 |
+
indices = torch.searchsorted(cached_data['sorted_tokens'], valid_tokens)
|
239 |
+
indices = torch.clamp(indices, 0, len(cached_data['sorted_tokens']) - 1)
|
240 |
+
exact_matches = cached_data['sorted_tokens'][indices] == valid_tokens
|
241 |
+
|
242 |
+
genre_values = cached_data['sorted_genres'][indices] # Shape: (num_valid_tokens, max_genres_per_anime)
|
243 |
+
|
244 |
+
valid_mask = token_mask.nonzero(as_tuple=True)[0]
|
245 |
+
exact_valid_mask = valid_mask[exact_matches]
|
246 |
+
|
247 |
+
flat_genres[exact_valid_mask] = genre_values[exact_matches]
|
248 |
+
|
249 |
+
return flat_genres.view(batch_size, seq_len, self.max_genres_per_anime)
|
250 |
+
|
251 |
+
def _aggregate_genre_embeddings(self, genre_embeddings):
|
252 |
+
"""Aggregate multiple genre embeddings per anime"""
|
253 |
+
# genre_embeddings shape: (batch_size, seq_len, max_genres_per_anime, embed_size)
|
254 |
+
batch_size, seq_len, max_genres, embed_size = genre_embeddings.shape
|
255 |
+
|
256 |
+
weights = F.softmax(self.genre_aggregation, dim=0)
|
257 |
+
weighted_genres = torch.einsum('bsgd,g->bsd', genre_embeddings, weights)
|
258 |
+
|
259 |
+
return weighted_genres
|
260 |
+
|
261 |
+
def forward(self, sequence):
|
262 |
+
"""
|
263 |
+
Enhanced forward pass with per-anime genre processing
|
264 |
+
"""
|
265 |
+
if sequence.max() >= self.vocab_size:
|
266 |
+
print(f"Warning: Input contains tokens >= vocab_size ({self.vocab_size})")
|
267 |
+
|
268 |
+
sequence = torch.clamp(sequence, 0, self.vocab_size - 1)
|
269 |
+
|
270 |
+
token_emb = self.token(sequence)
|
271 |
+
|
272 |
+
if self.multi_genre:
|
273 |
+
genre_sequences = self._get_multi_genre_mapping(sequence) # (batch, seq, max_genres)
|
274 |
+
|
275 |
+
genre_sequences = torch.clamp(genre_sequences, 0, self.num_genres - 1)
|
276 |
+
|
277 |
+
genre_embeddings = self.genre_embed(genre_sequences) # (batch, seq, max_genres, embed_size)
|
278 |
+
|
279 |
+
aggregated_genre_emb = self._aggregate_genre_embeddings(genre_embeddings) # (batch, seq, embed_size)
|
280 |
+
|
281 |
+
combined = torch.cat([token_emb, aggregated_genre_emb], dim=-1)
|
282 |
+
else:
|
283 |
+
genre_sequence = self._get_single_genre_mapping(sequence)
|
284 |
+
|
285 |
+
genre_sequence = torch.clamp(genre_sequence, 0, self.num_genres - 1)
|
286 |
+
|
287 |
+
genre_emb = self.genre_embed(genre_sequence)
|
288 |
+
combined = torch.cat([token_emb, genre_emb], dim=-1)
|
289 |
+
|
290 |
+
x = self.fusion_layer(combined)
|
291 |
+
|
292 |
+
return self.dropout(x)
|
293 |
+
|
294 |
+
|
295 |
+
def clear_cache(self):
|
296 |
+
"""Clear internal caches to free GPU memory"""
|
297 |
+
with self._cache_lock:
|
298 |
+
self._genre_cache.clear()
|
299 |
+
|
300 |
+
@classmethod
|
301 |
+
def clear_global_cache(cls):
|
302 |
+
"""Clear global mappings cache"""
|
303 |
+
with cls._cache_lock:
|
304 |
+
cls._mappings_cache = None
|
models/bert_modules/embedding/position.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
import torch
|
3 |
+
import math
|
4 |
+
|
5 |
+
|
6 |
+
class PositionalEmbedding(nn.Module):
|
7 |
+
|
8 |
+
def __init__(self, max_len, d_model):
|
9 |
+
super().__init__()
|
10 |
+
|
11 |
+
# Compute the positional encodings once in log space.
|
12 |
+
self.pe = nn.Embedding(max_len, d_model)
|
13 |
+
|
14 |
+
def forward(self, x):
|
15 |
+
batch_size = x.size(0)
|
16 |
+
return self.pe.weight.unsqueeze(0).repeat(batch_size, 1, 1)
|
models/bert_modules/embedding/segment.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
|
3 |
+
|
4 |
+
class SegmentEmbedding(nn.Embedding):
|
5 |
+
def __init__(self, embed_size=512):
|
6 |
+
super().__init__(3, embed_size, padding_idx=0)
|
models/bert_modules/embedding/token.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
|
3 |
+
|
4 |
+
class TokenEmbedding(nn.Embedding):
|
5 |
+
def __init__(self, vocab_size, embed_size=512):
|
6 |
+
super().__init__(vocab_size, embed_size, padding_idx=0)
|
models/bert_modules/transformer.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
|
3 |
+
from .attention import MultiHeadedAttention
|
4 |
+
from .utils import SublayerConnection, PositionwiseFeedForward
|
5 |
+
|
6 |
+
|
7 |
+
class TransformerBlock(nn.Module):
|
8 |
+
"""
|
9 |
+
Bidirectional Encoder = Transformer (self-attention)
|
10 |
+
Transformer = MultiHead_Attention + Feed_Forward with sublayer connection
|
11 |
+
"""
|
12 |
+
|
13 |
+
def __init__(self, hidden, attn_heads, feed_forward_hidden, dropout):
|
14 |
+
"""
|
15 |
+
:param hidden: hidden size of transformer
|
16 |
+
:param attn_heads: head sizes of multi-head attention
|
17 |
+
:param feed_forward_hidden: feed_forward_hidden, usually 4*hidden_size
|
18 |
+
:param dropout: dropout rate
|
19 |
+
"""
|
20 |
+
|
21 |
+
super().__init__()
|
22 |
+
self.attention = MultiHeadedAttention(h=attn_heads, d_model=hidden, dropout=dropout)
|
23 |
+
self.feed_forward = PositionwiseFeedForward(d_model=hidden, d_ff=feed_forward_hidden, dropout=dropout)
|
24 |
+
self.input_sublayer = SublayerConnection(size=hidden, dropout=dropout)
|
25 |
+
self.output_sublayer = SublayerConnection(size=hidden, dropout=dropout)
|
26 |
+
self.dropout = nn.Dropout(p=dropout)
|
27 |
+
|
28 |
+
def forward(self, x, mask):
|
29 |
+
x = self.input_sublayer(x, lambda _x: self.attention.forward(_x, _x, _x, mask=mask))
|
30 |
+
x = self.output_sublayer(x, self.feed_forward)
|
31 |
+
return self.dropout(x)
|
models/bert_modules/utils/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .feed_forward import PositionwiseFeedForward
|
2 |
+
from .layer_norm import LayerNorm
|
3 |
+
from .sublayer import SublayerConnection
|
4 |
+
from .gelu import GELU
|
models/bert_modules/utils/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (378 Bytes). View file
|
|
models/bert_modules/utils/__pycache__/feed_forward.cpython-312.pyc
ADDED
Binary file (1.43 kB). View file
|
|
models/bert_modules/utils/__pycache__/gelu.cpython-312.pyc
ADDED
Binary file (1 kB). View file
|
|
models/bert_modules/utils/__pycache__/layer_norm.cpython-312.pyc
ADDED
Binary file (1.49 kB). View file
|
|
models/bert_modules/utils/__pycache__/sublayer.cpython-312.pyc
ADDED
Binary file (1.34 kB). View file
|
|
models/bert_modules/utils/feed_forward.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
from .gelu import GELU
|
3 |
+
|
4 |
+
|
5 |
+
class PositionwiseFeedForward(nn.Module):
|
6 |
+
"Implements FFN equation."
|
7 |
+
|
8 |
+
def __init__(self, d_model, d_ff, dropout=0.1):
|
9 |
+
super(PositionwiseFeedForward, self).__init__()
|
10 |
+
self.w_1 = nn.Linear(d_model, d_ff)
|
11 |
+
self.w_2 = nn.Linear(d_ff, d_model)
|
12 |
+
self.dropout = nn.Dropout(dropout)
|
13 |
+
self.activation = GELU()
|
14 |
+
|
15 |
+
def forward(self, x):
|
16 |
+
return self.w_2(self.dropout(self.activation(self.w_1(x))))
|
models/bert_modules/utils/gelu.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
import torch
|
3 |
+
import math
|
4 |
+
|
5 |
+
|
6 |
+
class GELU(nn.Module):
|
7 |
+
"""
|
8 |
+
Paper Section 3.4, last paragraph notice that BERT used the GELU instead of RELU
|
9 |
+
"""
|
10 |
+
|
11 |
+
def forward(self, x):
|
12 |
+
return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
|
models/bert_modules/utils/layer_norm.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
import torch
|
3 |
+
|
4 |
+
|
5 |
+
class LayerNorm(nn.Module):
|
6 |
+
"Construct a layernorm module (See citation for details)."
|
7 |
+
|
8 |
+
def __init__(self, features, eps=1e-6):
|
9 |
+
super(LayerNorm, self).__init__()
|
10 |
+
self.a_2 = nn.Parameter(torch.ones(features))
|
11 |
+
self.b_2 = nn.Parameter(torch.zeros(features))
|
12 |
+
self.eps = eps
|
13 |
+
|
14 |
+
def forward(self, x):
|
15 |
+
mean = x.mean(-1, keepdim=True)
|
16 |
+
std = x.std(-1, keepdim=True)
|
17 |
+
return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
|
models/bert_modules/utils/sublayer.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
from .layer_norm import LayerNorm
|
3 |
+
|
4 |
+
|
5 |
+
class SublayerConnection(nn.Module):
|
6 |
+
"""
|
7 |
+
A residual connection followed by a layer norm.
|
8 |
+
Note for code simplicity the norm is first as opposed to last.
|
9 |
+
"""
|
10 |
+
|
11 |
+
def __init__(self, size, dropout):
|
12 |
+
super(SublayerConnection, self).__init__()
|
13 |
+
self.norm = LayerNorm(size)
|
14 |
+
self.dropout = nn.Dropout(dropout)
|
15 |
+
|
16 |
+
def forward(self, x, sublayer):
|
17 |
+
"Apply residual connection to any sublayer with the same size."
|
18 |
+
return x + self.dropout(sublayer(self.norm(x)))
|
models/dae.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .base import BaseModel
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
|
8 |
+
class DAEModel(BaseModel):
|
9 |
+
def __init__(self, args):
|
10 |
+
super().__init__(args)
|
11 |
+
|
12 |
+
# Input dropout
|
13 |
+
self.input_dropout = nn.Dropout(p=args.dae_dropout)
|
14 |
+
|
15 |
+
# Construct a list of dimensions for the encoder and the decoder
|
16 |
+
dims = [args.dae_hidden_dim] * 2 * args.dae_num_hidden
|
17 |
+
dims = [args.num_items] + dims + [args.dae_latent_dim]
|
18 |
+
|
19 |
+
# Stack encoders and decoders
|
20 |
+
encoder_modules, decoder_modules = [], []
|
21 |
+
for i in range(len(dims)//2):
|
22 |
+
encoder_modules.append(nn.Linear(dims[2*i], dims[2*i+1]))
|
23 |
+
decoder_modules.append(nn.Linear(dims[-2*i-1], dims[-2*i-2]))
|
24 |
+
self.encoder = nn.ModuleList(encoder_modules)
|
25 |
+
self.decoder = nn.ModuleList(decoder_modules)
|
26 |
+
|
27 |
+
# Initialize weights
|
28 |
+
self.encoder.apply(self.weight_init)
|
29 |
+
self.decoder.apply(self.weight_init)
|
30 |
+
|
31 |
+
def weight_init(self, m):
|
32 |
+
if isinstance(m, nn.Linear):
|
33 |
+
nn.init.kaiming_normal_(m.weight)
|
34 |
+
m.bias.data.normal_(0.0, 0.001)
|
35 |
+
|
36 |
+
@classmethod
|
37 |
+
def code(cls):
|
38 |
+
return 'dae'
|
39 |
+
|
40 |
+
def forward(self, x):
|
41 |
+
x = F.normalize(x)
|
42 |
+
x = self.input_dropout(x)
|
43 |
+
|
44 |
+
for i, layer in enumerate(self.encoder):
|
45 |
+
x = layer(x)
|
46 |
+
x = torch.tanh(x)
|
47 |
+
|
48 |
+
for i, layer in enumerate(self.decoder):
|
49 |
+
x = layer(x)
|
50 |
+
if i != len(self.decoder)-1:
|
51 |
+
x = torch.tanh(x)
|
52 |
+
|
53 |
+
return x
|
54 |
+
|
models/vae.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .base import BaseModel
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
|
8 |
+
class VAEModel(BaseModel):
|
9 |
+
def __init__(self, args):
|
10 |
+
super().__init__(args)
|
11 |
+
self.latent_dim = args.vae_latent_dim
|
12 |
+
|
13 |
+
# Input dropout
|
14 |
+
self.input_dropout = nn.Dropout(p=args.vae_dropout)
|
15 |
+
|
16 |
+
# Construct a list of dimensions for the encoder and the decoder
|
17 |
+
dims = [args.vae_hidden_dim] * 2 * args.vae_num_hidden
|
18 |
+
dims = [args.num_items] + dims + [args.vae_latent_dim * 2]
|
19 |
+
|
20 |
+
# Stack encoders and decoders
|
21 |
+
encoder_modules, decoder_modules = [], []
|
22 |
+
for i in range(len(dims)//2):
|
23 |
+
encoder_modules.append(nn.Linear(dims[2*i], dims[2*i+1]))
|
24 |
+
if i == 0:
|
25 |
+
decoder_modules.append(nn.Linear(dims[-1]//2, dims[-2]))
|
26 |
+
else:
|
27 |
+
decoder_modules.append(nn.Linear(dims[-2*i-1], dims[-2*i-2]))
|
28 |
+
self.encoder = nn.ModuleList(encoder_modules)
|
29 |
+
self.decoder = nn.ModuleList(decoder_modules)
|
30 |
+
|
31 |
+
# Initialize weights
|
32 |
+
self.encoder.apply(self.weight_init)
|
33 |
+
self.decoder.apply(self.weight_init)
|
34 |
+
|
35 |
+
def weight_init(self, m):
|
36 |
+
if isinstance(m, nn.Linear):
|
37 |
+
nn.init.kaiming_normal_(m.weight)
|
38 |
+
m.bias.data.zero_()
|
39 |
+
|
40 |
+
@classmethod
|
41 |
+
def code(cls):
|
42 |
+
return 'vae'
|
43 |
+
|
44 |
+
def forward(self, x):
|
45 |
+
x = F.normalize(x)
|
46 |
+
x = self.input_dropout(x)
|
47 |
+
|
48 |
+
for i, layer in enumerate(self.encoder):
|
49 |
+
x = layer(x)
|
50 |
+
if i != len(self.encoder) - 1:
|
51 |
+
x = torch.tanh(x)
|
52 |
+
|
53 |
+
mu, logvar = x[:, :self.latent_dim], x[:, self.latent_dim:]
|
54 |
+
|
55 |
+
if self.training:
|
56 |
+
# since log(var) = log(sigma^2) = 2*log(sigma)
|
57 |
+
sigma = torch.exp(0.5 * logvar)
|
58 |
+
eps = torch.randn_like(sigma)
|
59 |
+
x = mu + eps * sigma
|
60 |
+
else:
|
61 |
+
x = mu
|
62 |
+
|
63 |
+
for i, layer in enumerate(self.decoder):
|
64 |
+
x = layer(x)
|
65 |
+
if i != len(self.decoder) - 1:
|
66 |
+
x = torch.tanh(x)
|
67 |
+
|
68 |
+
return x, mu, logvar
|
69 |
+
|