Spaces:
Sleeping
Sleeping
some revision and refactor of the interface
Browse files- requirements.txt +1 -1
- streamlit_app.py +63 -114
requirements.txt
CHANGED
@@ -7,7 +7,7 @@ grobid_tei_xml==0.1.3
|
|
7 |
tqdm==4.66.2
|
8 |
pyyaml==6.0.1
|
9 |
pytest==8.1.1
|
10 |
-
streamlit==1.
|
11 |
lxml
|
12 |
Beautifulsoup4
|
13 |
python-dotenv
|
|
|
7 |
tqdm==4.66.2
|
8 |
pyyaml==6.0.1
|
9 |
pytest==8.1.1
|
10 |
+
streamlit==1.36.0
|
11 |
lxml
|
12 |
Beautifulsoup4
|
13 |
python-dotenv
|
streamlit_app.py
CHANGED
@@ -42,8 +42,6 @@ OPEN_EMBEDDINGS = {
|
|
42 |
'Salesforce/SFR-Embedding-Mistral': 'Salesforce/SFR-Embedding-Mistral'
|
43 |
}
|
44 |
|
45 |
-
DISABLE_MEMORY = ['zephyr-7b-beta']
|
46 |
-
|
47 |
if 'rqa' not in st.session_state:
|
48 |
st.session_state['rqa'] = {}
|
49 |
|
@@ -108,36 +106,6 @@ st.set_page_config(
|
|
108 |
}
|
109 |
)
|
110 |
|
111 |
-
css_modify_left_column = '''
|
112 |
-
<style>
|
113 |
-
[data-testid="stHorizontalBlock"] > div:nth-child(1) {
|
114 |
-
overflow: hidden;
|
115 |
-
background-color: red;
|
116 |
-
height: 70vh;
|
117 |
-
}
|
118 |
-
</style>
|
119 |
-
'''
|
120 |
-
css_modify_right_column = '''
|
121 |
-
<style>
|
122 |
-
[data-testid="stHorizontalBlock"]> div:first-child {
|
123 |
-
background-color: red;
|
124 |
-
position: fixed
|
125 |
-
height: 70vh;
|
126 |
-
}
|
127 |
-
</style>
|
128 |
-
'''
|
129 |
-
css_disable_scrolling_container = '''
|
130 |
-
<style>
|
131 |
-
[data-testid="ScrollToBottomContainer"] {
|
132 |
-
overflow: hidden;
|
133 |
-
}
|
134 |
-
</style>
|
135 |
-
'''
|
136 |
-
|
137 |
-
|
138 |
-
# st.markdown(css_lock_column_fixed, unsafe_allow_html=True)
|
139 |
-
# st.markdown(css2, unsafe_allow_html=True)
|
140 |
-
|
141 |
|
142 |
def new_file():
|
143 |
st.session_state['loaded_embeddings'] = None
|
@@ -188,7 +156,7 @@ def init_qa(model, embeddings_name=None, api_key=None):
|
|
188 |
)
|
189 |
embeddings = HuggingFaceEmbeddings(
|
190 |
model_name=OPEN_EMBEDDINGS[embeddings_name])
|
191 |
-
st.session_state['memory'] = ConversationBufferWindowMemory(k=4) if model not in DISABLE_MEMORY else None
|
192 |
else:
|
193 |
st.error("The model was not loaded properly. Try reloading. ")
|
194 |
st.stop()
|
@@ -233,23 +201,27 @@ def get_file_hash(fname):
|
|
233 |
return hash_md5.hexdigest()
|
234 |
|
235 |
|
236 |
-
def play_old_messages():
|
237 |
if st.session_state['messages']:
|
238 |
for message in st.session_state['messages']:
|
239 |
if message['role'] == 'user':
|
240 |
-
|
241 |
-
st.markdown(message['content'])
|
242 |
elif message['role'] == 'assistant':
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
st.write(message['content'])
|
248 |
|
249 |
|
250 |
# is_api_key_provided = st.session_state['api_key']
|
251 |
|
252 |
with st.sidebar:
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
st.session_state['model'] = model = st.selectbox(
|
254 |
"Model:",
|
255 |
options=OPENAI_MODELS + list(OPEN_MODELS.keys()),
|
@@ -305,22 +277,18 @@ with st.sidebar:
|
|
305 |
# else:
|
306 |
# is_api_key_provided = st.session_state['api_key']
|
307 |
|
308 |
-
st.button(
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
|
315 |
left_column, right_column = st.columns([1, 1])
|
|
|
|
|
316 |
|
317 |
with right_column:
|
318 |
-
st.title("📝 Scientific Document Insights Q/A")
|
319 |
-
st.subheader("Upload a scientific article in PDF, ask questions, get insights.")
|
320 |
-
|
321 |
-
st.markdown(
|
322 |
-
":warning: [Usage disclaimer](https://github.com/lfoppiano/document-qa?tab=readme-ov-file#disclaimer-on-data-security-and-privacy-%EF%B8%8F) :warning: ")
|
323 |
-
|
324 |
uploaded_file = st.file_uploader(
|
325 |
"Upload an article",
|
326 |
type=("pdf", "txt"),
|
@@ -330,11 +298,14 @@ with right_column:
|
|
330 |
help="The full-text is extracted using Grobid."
|
331 |
)
|
332 |
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
|
|
|
|
|
|
338 |
|
339 |
query_modes = {
|
340 |
"llm": "LLM Q/A",
|
@@ -355,6 +326,10 @@ with st.sidebar:
|
|
355 |
"relevant paragraphs to the question in the paper. "
|
356 |
"Question coefficient attempt to estimate how effective the question will be answered."
|
357 |
)
|
|
|
|
|
|
|
|
|
358 |
|
359 |
# Add a checkbox for showing annotations
|
360 |
# st.session_state['show_annotations'] = st.checkbox("Show annotations", value=True)
|
@@ -372,11 +347,6 @@ with st.sidebar:
|
|
372 |
help="Number of chunks to consider when answering a question",
|
373 |
disabled=not uploaded_file)
|
374 |
|
375 |
-
st.session_state['ner_processing'] = st.checkbox("Identify materials and properties.")
|
376 |
-
st.markdown(
|
377 |
-
'The LLM responses undergo post-processing to extract <span style="color:orange">physical quantities, measurements</span>, and <span style="color:green">materials</span> mentions.',
|
378 |
-
unsafe_allow_html=True)
|
379 |
-
|
380 |
st.divider()
|
381 |
|
382 |
st.header("Documentation")
|
@@ -403,7 +373,7 @@ if uploaded_file and not st.session_state.loaded_embeddings:
|
|
403 |
st.error("Before uploading a document, you must enter the API key. ")
|
404 |
st.stop()
|
405 |
|
406 |
-
with
|
407 |
with st.spinner('Reading file, calling Grobid, and creating memory embeddings...'):
|
408 |
binary = uploaded_file.getvalue()
|
409 |
tmp_file = NamedTemporaryFile()
|
@@ -416,8 +386,6 @@ if uploaded_file and not st.session_state.loaded_embeddings:
|
|
416 |
st.session_state['loaded_embeddings'] = True
|
417 |
st.session_state.messages = []
|
418 |
|
419 |
-
# timestamp = datetime.utcnow()
|
420 |
-
|
421 |
|
422 |
def rgb_to_hex(rgb):
|
423 |
return "#{:02x}{:02x}{:02x}".format(*rgb)
|
@@ -439,41 +407,21 @@ def generate_color_gradient(num_elements):
|
|
439 |
|
440 |
|
441 |
with right_column:
|
442 |
-
# css = '''
|
443 |
-
# <style>
|
444 |
-
# [data-testid="column"] {
|
445 |
-
# overflow: auto;
|
446 |
-
# height: 70vh;
|
447 |
-
# }
|
448 |
-
# </style>
|
449 |
-
# '''
|
450 |
-
# st.markdown(css, unsafe_allow_html=True)
|
451 |
-
|
452 |
-
# st.markdown(
|
453 |
-
# """
|
454 |
-
# <script>
|
455 |
-
# document.querySelectorAll('[data-testid="column"]').scrollIntoView({behavior: "smooth"});
|
456 |
-
# </script>
|
457 |
-
# """,
|
458 |
-
# unsafe_allow_html=True,
|
459 |
-
# )
|
460 |
-
|
461 |
if st.session_state.loaded_embeddings and question and len(question) > 0 and st.session_state.doc_id:
|
462 |
for message in st.session_state.messages:
|
463 |
-
with
|
464 |
if message['mode'] == "llm":
|
465 |
-
|
466 |
elif message['mode'] == "embeddings":
|
467 |
-
|
468 |
if message['mode'] == "question_coefficient":
|
469 |
-
|
470 |
if model not in st.session_state['rqa']:
|
471 |
st.error("The API Key for the " + model + " is missing. Please add it before sending any query. `")
|
472 |
st.stop()
|
473 |
|
474 |
-
|
475 |
-
|
476 |
-
st.session_state.messages.append({"role": "user", "mode": mode, "content": question})
|
477 |
|
478 |
text_response = None
|
479 |
if mode == "embeddings":
|
@@ -484,12 +432,13 @@ with right_column:
|
|
484 |
context_size=context_size
|
485 |
)
|
486 |
elif mode == "llm":
|
487 |
-
with
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
|
|
493 |
|
494 |
elif mode == "question_coefficient":
|
495 |
with st.spinner("Estimate question/context relevancy..."):
|
@@ -511,28 +460,28 @@ with right_column:
|
|
511 |
if not text_response:
|
512 |
st.error("Something went wrong. Contact Luca Foppiano ([email protected]) to report the issue.")
|
513 |
|
514 |
-
|
515 |
-
if
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
st.session_state.messages.append({"role": "assistant", "mode": mode, "content": text_response})
|
527 |
|
528 |
elif st.session_state.loaded_embeddings and st.session_state.doc_id:
|
529 |
-
play_old_messages()
|
530 |
|
531 |
with left_column:
|
532 |
if st.session_state['binary']:
|
533 |
pdf_viewer(
|
534 |
input=st.session_state['binary'],
|
535 |
-
annotation_outline_size=
|
536 |
annotations=st.session_state['annotations'],
|
537 |
-
render_text=True
|
|
|
538 |
)
|
|
|
42 |
'Salesforce/SFR-Embedding-Mistral': 'Salesforce/SFR-Embedding-Mistral'
|
43 |
}
|
44 |
|
|
|
|
|
45 |
if 'rqa' not in st.session_state:
|
46 |
st.session_state['rqa'] = {}
|
47 |
|
|
|
106 |
}
|
107 |
)
|
108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
def new_file():
|
111 |
st.session_state['loaded_embeddings'] = None
|
|
|
156 |
)
|
157 |
embeddings = HuggingFaceEmbeddings(
|
158 |
model_name=OPEN_EMBEDDINGS[embeddings_name])
|
159 |
+
# st.session_state['memory'] = ConversationBufferWindowMemory(k=4) if model not in DISABLE_MEMORY else None
|
160 |
else:
|
161 |
st.error("The model was not loaded properly. Try reloading. ")
|
162 |
st.stop()
|
|
|
201 |
return hash_md5.hexdigest()
|
202 |
|
203 |
|
204 |
+
def play_old_messages(container):
|
205 |
if st.session_state['messages']:
|
206 |
for message in st.session_state['messages']:
|
207 |
if message['role'] == 'user':
|
208 |
+
container.chat_message("user").markdown(message['content'])
|
|
|
209 |
elif message['role'] == 'assistant':
|
210 |
+
if mode == "LLM":
|
211 |
+
container.chat_message("assistant").markdown(message['content'], unsafe_allow_html=True)
|
212 |
+
else:
|
213 |
+
container.chat_message("assistant").write(message['content'])
|
|
|
214 |
|
215 |
|
216 |
# is_api_key_provided = st.session_state['api_key']
|
217 |
|
218 |
with st.sidebar:
|
219 |
+
st.title("📝 Scientific Document Insights Q/A")
|
220 |
+
st.subheader("Upload a scientific article in PDF, ask questions, get insights.")
|
221 |
+
st.markdown(
|
222 |
+
":warning: [Usage disclaimer](https://github.com/lfoppiano/document-qa?tab=readme-ov-file#disclaimer-on-data-security-and-privacy-%EF%B8%8F) :warning: ")
|
223 |
+
|
224 |
+
st.divider()
|
225 |
st.session_state['model'] = model = st.selectbox(
|
226 |
"Model:",
|
227 |
options=OPENAI_MODELS + list(OPEN_MODELS.keys()),
|
|
|
277 |
# else:
|
278 |
# is_api_key_provided = st.session_state['api_key']
|
279 |
|
280 |
+
# st.button(
|
281 |
+
# 'Reset chat memory.',
|
282 |
+
# key="reset-memory-button",
|
283 |
+
# on_click=clear_memory,
|
284 |
+
# help="Clear the conversational memory. Currently implemented to retrain the 4 most recent messages.",
|
285 |
+
# disabled=model in st.session_state['rqa'] and st.session_state['rqa'][model].memory is None)
|
286 |
|
287 |
left_column, right_column = st.columns([1, 1])
|
288 |
+
right_column = right_column.container(height=600, border=False)
|
289 |
+
left_column = left_column.container(height=600, border=False)
|
290 |
|
291 |
with right_column:
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
uploaded_file = st.file_uploader(
|
293 |
"Upload an article",
|
294 |
type=("pdf", "txt"),
|
|
|
298 |
help="The full-text is extracted using Grobid."
|
299 |
)
|
300 |
|
301 |
+
placeholder = st.empty()
|
302 |
+
messages = st.container(height=300, border=False)
|
303 |
+
|
304 |
+
question = st.chat_input(
|
305 |
+
"Ask something about the article",
|
306 |
+
# placeholder="Can you give me a short summary?",
|
307 |
+
disabled=not uploaded_file
|
308 |
+
)
|
309 |
|
310 |
query_modes = {
|
311 |
"llm": "LLM Q/A",
|
|
|
326 |
"relevant paragraphs to the question in the paper. "
|
327 |
"Question coefficient attempt to estimate how effective the question will be answered."
|
328 |
)
|
329 |
+
st.session_state['ner_processing'] = st.checkbox(
|
330 |
+
"Identify materials and properties.",
|
331 |
+
help='The LLM responses undergo post-processing to extract physical quantities, measurements, and materials mentions.'
|
332 |
+
)
|
333 |
|
334 |
# Add a checkbox for showing annotations
|
335 |
# st.session_state['show_annotations'] = st.checkbox("Show annotations", value=True)
|
|
|
347 |
help="Number of chunks to consider when answering a question",
|
348 |
disabled=not uploaded_file)
|
349 |
|
|
|
|
|
|
|
|
|
|
|
350 |
st.divider()
|
351 |
|
352 |
st.header("Documentation")
|
|
|
373 |
st.error("Before uploading a document, you must enter the API key. ")
|
374 |
st.stop()
|
375 |
|
376 |
+
with left_column:
|
377 |
with st.spinner('Reading file, calling Grobid, and creating memory embeddings...'):
|
378 |
binary = uploaded_file.getvalue()
|
379 |
tmp_file = NamedTemporaryFile()
|
|
|
386 |
st.session_state['loaded_embeddings'] = True
|
387 |
st.session_state.messages = []
|
388 |
|
|
|
|
|
389 |
|
390 |
def rgb_to_hex(rgb):
|
391 |
return "#{:02x}{:02x}{:02x}".format(*rgb)
|
|
|
407 |
|
408 |
|
409 |
with right_column:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
410 |
if st.session_state.loaded_embeddings and question and len(question) > 0 and st.session_state.doc_id:
|
411 |
for message in st.session_state.messages:
|
412 |
+
with messages.chat_message(message["role"]):
|
413 |
if message['mode'] == "llm":
|
414 |
+
messages.chat_message(message["role"]).markdown(message["content"], unsafe_allow_html=True)
|
415 |
elif message['mode'] == "embeddings":
|
416 |
+
messages.chat_message(message["role"]).write(message["content"])
|
417 |
if message['mode'] == "question_coefficient":
|
418 |
+
messages.chat_message(message["role"]).markdown(message["content"], unsafe_allow_html=True)
|
419 |
if model not in st.session_state['rqa']:
|
420 |
st.error("The API Key for the " + model + " is missing. Please add it before sending any query. `")
|
421 |
st.stop()
|
422 |
|
423 |
+
messages.chat_message("user").markdown(question)
|
424 |
+
st.session_state.messages.append({"role": "user", "mode": mode, "content": question})
|
|
|
425 |
|
426 |
text_response = None
|
427 |
if mode == "embeddings":
|
|
|
432 |
context_size=context_size
|
433 |
)
|
434 |
elif mode == "llm":
|
435 |
+
with placeholder:
|
436 |
+
with st.spinner("Generating LLM response..."):
|
437 |
+
_, text_response, coordinates = st.session_state['rqa'][model].query_document(
|
438 |
+
question,
|
439 |
+
st.session_state.doc_id,
|
440 |
+
context_size=context_size
|
441 |
+
)
|
442 |
|
443 |
elif mode == "question_coefficient":
|
444 |
with st.spinner("Estimate question/context relevancy..."):
|
|
|
460 |
if not text_response:
|
461 |
st.error("Something went wrong. Contact Luca Foppiano ([email protected]) to report the issue.")
|
462 |
|
463 |
+
if mode == "llm":
|
464 |
+
if st.session_state['ner_processing']:
|
465 |
+
with st.spinner("Processing NER on LLM response..."):
|
466 |
+
entities = gqa.process_single_text(text_response)
|
467 |
+
decorated_text = decorate_text_with_annotations(text_response.strip(), entities)
|
468 |
+
decorated_text = decorated_text.replace('class="label material"', 'style="color:green"')
|
469 |
+
decorated_text = re.sub(r'class="label[^"]+"', 'style="color:orange"', decorated_text)
|
470 |
+
text_response = decorated_text
|
471 |
+
messages.chat_message("assistant").markdown(text_response, unsafe_allow_html=True)
|
472 |
+
else:
|
473 |
+
messages.chat_message("assistant").write(text_response)
|
474 |
+
st.session_state.messages.append({"role": "assistant", "mode": mode, "content": text_response})
|
|
|
475 |
|
476 |
elif st.session_state.loaded_embeddings and st.session_state.doc_id:
|
477 |
+
play_old_messages(messages)
|
478 |
|
479 |
with left_column:
|
480 |
if st.session_state['binary']:
|
481 |
pdf_viewer(
|
482 |
input=st.session_state['binary'],
|
483 |
+
annotation_outline_size=2,
|
484 |
annotations=st.session_state['annotations'],
|
485 |
+
render_text=True,
|
486 |
+
height=700
|
487 |
)
|