File size: 1,349 Bytes
8453bbe
ffbc1c3
8453bbe
e5f8e18
8453bbe
e5f8e18
8453bbe
 
 
e5f8e18
8453bbe
 
ffbc1c3
e5f8e18
 
ffbc1c3
 
e5f8e18
 
 
ffbc1c3
8453bbe
 
e5f8e18
 
 
 
8453bbe
e5f8e18
 
 
8453bbe
 
e5f8e18
ffbc1c3
8453bbe
e5f8e18
8453bbe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import gradio as gr

# Set model name and path
model_name = "ybelkada/falcon-7b-sharded-bf16"
fine_tuned_model = "mounseflit/falcon-7b-marrakech"

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Load base model (CPU-only, no quantization)
base_model = AutoModelForCausalLM.from_pretrained(
    model_name,
    device_map="auto",        # Auto device map for CPU
    offload_folder="offload", # Offload large parts of the model to disk to save memory
    offload_state_dict=True   # Enable state dict offloading to reduce memory usage
)

# Load the fine-tuned LoRA model on top of the base model
model = PeftModel.from_pretrained(base_model, fine_tuned_model)

# Ensure the model is in evaluation mode
model.eval()

# Function to generate text
def generate_text(prompt):
    inputs = tokenizer(prompt, return_tensors="pt", max_length=50, truncation=True).to("cpu")  # Reduce input length
    with torch.no_grad():
        outputs = model.generate(**inputs, max_length=100)  # Reduce output length
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

# Create Gradio interface
iface = gr.Interface(fn=generate_text, inputs="text", outputs="text", title="Falcon 7B Lite (CPU)")

# Launch the app
iface.launch()