|  | import pickle | 
					
						
						|  | import os | 
					
						
						|  | import re | 
					
						
						|  | from g2p_en import G2p | 
					
						
						|  |  | 
					
						
						|  | from . import symbols | 
					
						
						|  |  | 
					
						
						|  | from .english_utils.abbreviations import expand_abbreviations | 
					
						
						|  | from .english_utils.time_norm import expand_time_english | 
					
						
						|  | from .english_utils.number_norm import normalize_numbers | 
					
						
						|  | from .japanese import distribute_phone | 
					
						
						|  |  | 
					
						
						|  | from transformers import AutoTokenizer | 
					
						
						|  |  | 
					
						
						|  | current_file_path = os.path.dirname(__file__) | 
					
						
						|  | CMU_DICT_PATH = os.path.join(current_file_path, "cmudict.rep") | 
					
						
						|  | CACHE_PATH = os.path.join(current_file_path, "cmudict_cache.pickle") | 
					
						
						|  | _g2p = G2p() | 
					
						
						|  |  | 
					
						
						|  | arpa = { | 
					
						
						|  | "AH0", | 
					
						
						|  | "S", | 
					
						
						|  | "AH1", | 
					
						
						|  | "EY2", | 
					
						
						|  | "AE2", | 
					
						
						|  | "EH0", | 
					
						
						|  | "OW2", | 
					
						
						|  | "UH0", | 
					
						
						|  | "NG", | 
					
						
						|  | "B", | 
					
						
						|  | "G", | 
					
						
						|  | "AY0", | 
					
						
						|  | "M", | 
					
						
						|  | "AA0", | 
					
						
						|  | "F", | 
					
						
						|  | "AO0", | 
					
						
						|  | "ER2", | 
					
						
						|  | "UH1", | 
					
						
						|  | "IY1", | 
					
						
						|  | "AH2", | 
					
						
						|  | "DH", | 
					
						
						|  | "IY0", | 
					
						
						|  | "EY1", | 
					
						
						|  | "IH0", | 
					
						
						|  | "K", | 
					
						
						|  | "N", | 
					
						
						|  | "W", | 
					
						
						|  | "IY2", | 
					
						
						|  | "T", | 
					
						
						|  | "AA1", | 
					
						
						|  | "ER1", | 
					
						
						|  | "EH2", | 
					
						
						|  | "OY0", | 
					
						
						|  | "UH2", | 
					
						
						|  | "UW1", | 
					
						
						|  | "Z", | 
					
						
						|  | "AW2", | 
					
						
						|  | "AW1", | 
					
						
						|  | "V", | 
					
						
						|  | "UW2", | 
					
						
						|  | "AA2", | 
					
						
						|  | "ER", | 
					
						
						|  | "AW0", | 
					
						
						|  | "UW0", | 
					
						
						|  | "R", | 
					
						
						|  | "OW1", | 
					
						
						|  | "EH1", | 
					
						
						|  | "ZH", | 
					
						
						|  | "AE0", | 
					
						
						|  | "IH2", | 
					
						
						|  | "IH", | 
					
						
						|  | "Y", | 
					
						
						|  | "JH", | 
					
						
						|  | "P", | 
					
						
						|  | "AY1", | 
					
						
						|  | "EY0", | 
					
						
						|  | "OY2", | 
					
						
						|  | "TH", | 
					
						
						|  | "HH", | 
					
						
						|  | "D", | 
					
						
						|  | "ER0", | 
					
						
						|  | "CH", | 
					
						
						|  | "AO1", | 
					
						
						|  | "AE1", | 
					
						
						|  | "AO2", | 
					
						
						|  | "OY1", | 
					
						
						|  | "AY2", | 
					
						
						|  | "IH1", | 
					
						
						|  | "OW0", | 
					
						
						|  | "L", | 
					
						
						|  | "SH", | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def post_replace_ph(ph): | 
					
						
						|  | rep_map = { | 
					
						
						|  | ":": ",", | 
					
						
						|  | ";": ",", | 
					
						
						|  | ",": ",", | 
					
						
						|  | "。": ".", | 
					
						
						|  | "!": "!", | 
					
						
						|  | "?": "?", | 
					
						
						|  | "\n": ".", | 
					
						
						|  | "·": ",", | 
					
						
						|  | "、": ",", | 
					
						
						|  | "...": "…", | 
					
						
						|  | "v": "V", | 
					
						
						|  | } | 
					
						
						|  | if ph in rep_map.keys(): | 
					
						
						|  | ph = rep_map[ph] | 
					
						
						|  | if ph in symbols: | 
					
						
						|  | return ph | 
					
						
						|  | if ph not in symbols: | 
					
						
						|  | ph = "UNK" | 
					
						
						|  | return ph | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def read_dict(): | 
					
						
						|  | g2p_dict = {} | 
					
						
						|  | start_line = 49 | 
					
						
						|  | with open(CMU_DICT_PATH) as f: | 
					
						
						|  | line = f.readline() | 
					
						
						|  | line_index = 1 | 
					
						
						|  | while line: | 
					
						
						|  | if line_index >= start_line: | 
					
						
						|  | line = line.strip() | 
					
						
						|  | word_split = line.split("  ") | 
					
						
						|  | word = word_split[0] | 
					
						
						|  |  | 
					
						
						|  | syllable_split = word_split[1].split(" - ") | 
					
						
						|  | g2p_dict[word] = [] | 
					
						
						|  | for syllable in syllable_split: | 
					
						
						|  | phone_split = syllable.split(" ") | 
					
						
						|  | g2p_dict[word].append(phone_split) | 
					
						
						|  |  | 
					
						
						|  | line_index = line_index + 1 | 
					
						
						|  | line = f.readline() | 
					
						
						|  |  | 
					
						
						|  | return g2p_dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def cache_dict(g2p_dict, file_path): | 
					
						
						|  | with open(file_path, "wb") as pickle_file: | 
					
						
						|  | pickle.dump(g2p_dict, pickle_file) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_dict(): | 
					
						
						|  | if os.path.exists(CACHE_PATH): | 
					
						
						|  | with open(CACHE_PATH, "rb") as pickle_file: | 
					
						
						|  | g2p_dict = pickle.load(pickle_file) | 
					
						
						|  | else: | 
					
						
						|  | g2p_dict = read_dict() | 
					
						
						|  | cache_dict(g2p_dict, CACHE_PATH) | 
					
						
						|  |  | 
					
						
						|  | return g2p_dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | eng_dict = get_dict() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def refine_ph(phn): | 
					
						
						|  | tone = 0 | 
					
						
						|  | if re.search(r"\d$", phn): | 
					
						
						|  | tone = int(phn[-1]) + 1 | 
					
						
						|  | phn = phn[:-1] | 
					
						
						|  | return phn.lower(), tone | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def refine_syllables(syllables): | 
					
						
						|  | tones = [] | 
					
						
						|  | phonemes = [] | 
					
						
						|  | for phn_list in syllables: | 
					
						
						|  | for i in range(len(phn_list)): | 
					
						
						|  | phn = phn_list[i] | 
					
						
						|  | phn, tone = refine_ph(phn) | 
					
						
						|  | phonemes.append(phn) | 
					
						
						|  | tones.append(tone) | 
					
						
						|  | return phonemes, tones | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def text_normalize(text): | 
					
						
						|  | text = text.lower() | 
					
						
						|  | text = expand_time_english(text) | 
					
						
						|  | text = normalize_numbers(text) | 
					
						
						|  | text = expand_abbreviations(text) | 
					
						
						|  | return text | 
					
						
						|  |  | 
					
						
						|  | model_id = 'bert-base-uncased' | 
					
						
						|  | tokenizer = AutoTokenizer.from_pretrained(model_id) | 
					
						
						|  | def g2p_old(text): | 
					
						
						|  | tokenized = tokenizer.tokenize(text) | 
					
						
						|  |  | 
					
						
						|  | phones = [] | 
					
						
						|  | tones = [] | 
					
						
						|  | words = re.split(r"([,;.\-\?\!\s+])", text) | 
					
						
						|  | for w in words: | 
					
						
						|  | if w.upper() in eng_dict: | 
					
						
						|  | phns, tns = refine_syllables(eng_dict[w.upper()]) | 
					
						
						|  | phones += phns | 
					
						
						|  | tones += tns | 
					
						
						|  | else: | 
					
						
						|  | phone_list = list(filter(lambda p: p != " ", _g2p(w))) | 
					
						
						|  | for ph in phone_list: | 
					
						
						|  | if ph in arpa: | 
					
						
						|  | ph, tn = refine_ph(ph) | 
					
						
						|  | phones.append(ph) | 
					
						
						|  | tones.append(tn) | 
					
						
						|  | else: | 
					
						
						|  | phones.append(ph) | 
					
						
						|  | tones.append(0) | 
					
						
						|  |  | 
					
						
						|  | word2ph = [1 for i in phones] | 
					
						
						|  |  | 
					
						
						|  | phones = [post_replace_ph(i) for i in phones] | 
					
						
						|  | return phones, tones, word2ph | 
					
						
						|  |  | 
					
						
						|  | def g2p(text, pad_start_end=True, tokenized=None): | 
					
						
						|  | if tokenized is None: | 
					
						
						|  | tokenized = tokenizer.tokenize(text) | 
					
						
						|  |  | 
					
						
						|  | phs = [] | 
					
						
						|  | ph_groups = [] | 
					
						
						|  | for t in tokenized: | 
					
						
						|  | if not t.startswith("#"): | 
					
						
						|  | ph_groups.append([t]) | 
					
						
						|  | else: | 
					
						
						|  | ph_groups[-1].append(t.replace("#", "")) | 
					
						
						|  |  | 
					
						
						|  | phones = [] | 
					
						
						|  | tones = [] | 
					
						
						|  | word2ph = [] | 
					
						
						|  | for group in ph_groups: | 
					
						
						|  | w = "".join(group) | 
					
						
						|  | phone_len = 0 | 
					
						
						|  | word_len = len(group) | 
					
						
						|  | if w.upper() in eng_dict: | 
					
						
						|  | phns, tns = refine_syllables(eng_dict[w.upper()]) | 
					
						
						|  | phones += phns | 
					
						
						|  | tones += tns | 
					
						
						|  | phone_len += len(phns) | 
					
						
						|  | else: | 
					
						
						|  | phone_list = list(filter(lambda p: p != " ", _g2p(w))) | 
					
						
						|  | for ph in phone_list: | 
					
						
						|  | if ph in arpa: | 
					
						
						|  | ph, tn = refine_ph(ph) | 
					
						
						|  | phones.append(ph) | 
					
						
						|  | tones.append(tn) | 
					
						
						|  | else: | 
					
						
						|  | phones.append(ph) | 
					
						
						|  | tones.append(0) | 
					
						
						|  | phone_len += 1 | 
					
						
						|  | aaa = distribute_phone(phone_len, word_len) | 
					
						
						|  | word2ph += aaa | 
					
						
						|  | phones = [post_replace_ph(i) for i in phones] | 
					
						
						|  |  | 
					
						
						|  | if pad_start_end: | 
					
						
						|  | phones = ["_"] + phones + ["_"] | 
					
						
						|  | tones = [0] + tones + [0] | 
					
						
						|  | word2ph = [1] + word2ph + [1] | 
					
						
						|  | return phones, tones, word2ph | 
					
						
						|  |  | 
					
						
						|  | def get_bert_feature(text, word2ph, device=None): | 
					
						
						|  | from text import english_bert | 
					
						
						|  |  | 
					
						
						|  | return english_bert.get_bert_feature(text, word2ph, device=device) | 
					
						
						|  |  | 
					
						
						|  | if __name__ == "__main__": | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | from text.english_bert import get_bert_feature | 
					
						
						|  | text = "In this paper, we propose 1 DSPGAN, a N-F-T GAN-based universal vocoder." | 
					
						
						|  | text = text_normalize(text) | 
					
						
						|  | phones, tones, word2ph = g2p(text) | 
					
						
						|  | import pdb; pdb.set_trace() | 
					
						
						|  | bert = get_bert_feature(text, word2ph) | 
					
						
						|  |  | 
					
						
						|  | print(phones, tones, word2ph, bert.shape) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  |