Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,276 Bytes
195fd31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 |
#!/usr/bin/env python3
import cv2, os, subprocess, argparse
from PIL import Image
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from tqdm import tqdm
import numpy as np
from datetime import datetime
# Constants
TEST_MODE_DURATION = 3 # Process only first 3 seconds in test mode
FFMPEG_PRESETS = [
"ultrafast",
"superfast",
"veryfast",
"faster",
"fast",
"medium",
"slow",
"slower",
"veryslow",
]
FONT = cv2.FONT_HERSHEY_SIMPLEX # Font for bounding-box-style labels
# Detection parameters
IOU_THRESHOLD = 0.5 # IoU threshold for considering boxes related
# Hitmarker parameters
HITMARKER_SIZE = 20 # Size of the hitmarker in pixels
HITMARKER_GAP = 3 # Size of the empty space in the middle (reduced from 8)
HITMARKER_THICKNESS = 2 # Thickness of hitmarker lines
HITMARKER_COLOR = (255, 255, 255) # White color for hitmarker
HITMARKER_SHADOW_COLOR = (80, 80, 80) # Lighter gray for shadow effect
HITMARKER_SHADOW_OFFSET = 1 # Smaller shadow offset
def load_moondream():
"""Load Moondream model and tokenizer."""
model = AutoModelForCausalLM.from_pretrained(
"vikhyatk/moondream2", trust_remote_code=True, device_map={"": "cuda"}
)
tokenizer = AutoTokenizer.from_pretrained("vikhyatk/moondream2")
return model, tokenizer
def get_video_properties(video_path):
"""Get basic video properties."""
video = cv2.VideoCapture(video_path)
fps = video.get(cv2.CAP_PROP_FPS)
frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
video.release()
return {"fps": fps, "frame_count": frame_count, "width": width, "height": height}
def is_valid_box(box):
"""Check if box coordinates are reasonable."""
x1, y1, x2, y2 = box
width = x2 - x1
height = y2 - y1
# Reject boxes that are too large (over 90% of frame in both dimensions)
if width > 0.9 and height > 0.9:
return False
# Reject boxes that are too small (less than 1% of frame)
if width < 0.01 or height < 0.01:
return False
return True
def split_frame_into_tiles(frame, rows, cols):
"""Split a frame into a grid of tiles."""
height, width = frame.shape[:2]
tile_height = height // rows
tile_width = width // cols
tiles = []
tile_positions = []
for i in range(rows):
for j in range(cols):
y1 = i * tile_height
y2 = (i + 1) * tile_height if i < rows - 1 else height
x1 = j * tile_width
x2 = (j + 1) * tile_width if j < cols - 1 else width
tile = frame[y1:y2, x1:x2]
tiles.append(tile)
tile_positions.append((x1, y1, x2, y2))
return tiles, tile_positions
def convert_tile_coords_to_frame(box, tile_pos, frame_shape):
"""Convert coordinates from tile space to frame space."""
frame_height, frame_width = frame_shape[:2]
tile_x1, tile_y1, tile_x2, tile_y2 = tile_pos
tile_width = tile_x2 - tile_x1
tile_height = tile_y2 - tile_y1
x1_tile_abs = box[0] * tile_width
y1_tile_abs = box[1] * tile_height
x2_tile_abs = box[2] * tile_width
y2_tile_abs = box[3] * tile_height
x1_frame_abs = tile_x1 + x1_tile_abs
y1_frame_abs = tile_y1 + y1_tile_abs
x2_frame_abs = tile_x1 + x2_tile_abs
y2_frame_abs = tile_y1 + y2_tile_abs
x1_norm = x1_frame_abs / frame_width
y1_norm = y1_frame_abs / frame_height
x2_norm = x2_frame_abs / frame_width
y2_norm = y2_frame_abs / frame_height
x1_norm = max(0.0, min(1.0, x1_norm))
y1_norm = max(0.0, min(1.0, y1_norm))
x2_norm = max(0.0, min(1.0, x2_norm))
y2_norm = max(0.0, min(1.0, y2_norm))
return [x1_norm, y1_norm, x2_norm, y2_norm]
def merge_tile_detections(tile_detections, iou_threshold=0.5):
"""Merge detections from different tiles using NMS-like approach."""
if not tile_detections:
return []
all_boxes = []
all_keywords = []
# Collect all boxes and their keywords
for detections in tile_detections:
for box, keyword in detections:
all_boxes.append(box)
all_keywords.append(keyword)
if not all_boxes:
return []
# Convert to numpy for easier processing
boxes = np.array(all_boxes)
# Calculate areas
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
areas = (x2 - x1) * (y2 - y1)
# Sort boxes by area
order = areas.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
if order.size == 1:
break
# Calculate IoU with rest of boxes
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1)
h = np.maximum(0.0, yy2 - yy1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
# Get indices of boxes with IoU less than threshold
inds = np.where(ovr <= iou_threshold)[0]
order = order[inds + 1]
return [(all_boxes[i], all_keywords[i]) for i in keep]
def detect_ads_in_frame(model, tokenizer, image, detect_keyword, rows=1, cols=1):
"""Detect objects in a frame using grid-based detection."""
if rows == 1 and cols == 1:
return detect_ads_in_frame_single(model, tokenizer, image, detect_keyword)
# Convert numpy array to PIL Image if needed
if not isinstance(image, Image.Image):
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Split frame into tiles
tiles, tile_positions = split_frame_into_tiles(image, rows, cols)
# Process each tile
tile_detections = []
for tile, tile_pos in zip(tiles, tile_positions):
# Convert tile to PIL Image
tile_pil = Image.fromarray(tile)
# Detect objects in tile
response = model.detect(tile_pil, detect_keyword)
if response and "objects" in response and response["objects"]:
objects = response["objects"]
tile_objects = []
for obj in objects:
if all(k in obj for k in ["x_min", "y_min", "x_max", "y_max"]):
box = [obj["x_min"], obj["y_min"], obj["x_max"], obj["y_max"]]
if is_valid_box(box):
# Convert tile coordinates to frame coordinates
frame_box = convert_tile_coords_to_frame(
box, tile_pos, image.shape
)
tile_objects.append((frame_box, detect_keyword))
if tile_objects: # Only append if we found valid objects
tile_detections.append(tile_objects)
# Merge detections from all tiles
merged_detections = merge_tile_detections(tile_detections)
return merged_detections
def detect_ads_in_frame_single(model, tokenizer, image, detect_keyword):
"""Single-frame detection function."""
detected_objects = []
# Convert numpy array to PIL Image if needed
if not isinstance(image, Image.Image):
image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
# Detect objects
response = model.detect(image, detect_keyword)
# Check if we have valid objects
if response and "objects" in response and response["objects"]:
objects = response["objects"]
for obj in objects:
if all(k in obj for k in ["x_min", "y_min", "x_max", "y_max"]):
box = [obj["x_min"], obj["y_min"], obj["x_max"], obj["y_max"]]
# If box is valid (not full-frame), add it
if is_valid_box(box):
detected_objects.append((box, detect_keyword))
return detected_objects
def draw_hitmarker(
frame, center_x, center_y, size=HITMARKER_SIZE, color=HITMARKER_COLOR, shadow=True
):
"""Draw a COD-style hitmarker cross with more space in the middle."""
half_size = size // 2
# Draw shadow first if enabled
if shadow:
# Top-left to center shadow
cv2.line(
frame,
(
center_x - half_size + HITMARKER_SHADOW_OFFSET,
center_y - half_size + HITMARKER_SHADOW_OFFSET,
),
(
center_x - HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
center_y - HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
),
HITMARKER_SHADOW_COLOR,
HITMARKER_THICKNESS,
)
# Top-right to center shadow
cv2.line(
frame,
(
center_x + half_size + HITMARKER_SHADOW_OFFSET,
center_y - half_size + HITMARKER_SHADOW_OFFSET,
),
(
center_x + HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
center_y - HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
),
HITMARKER_SHADOW_COLOR,
HITMARKER_THICKNESS,
)
# Bottom-left to center shadow
cv2.line(
frame,
(
center_x - half_size + HITMARKER_SHADOW_OFFSET,
center_y + half_size + HITMARKER_SHADOW_OFFSET,
),
(
center_x - HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
center_y + HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
),
HITMARKER_SHADOW_COLOR,
HITMARKER_THICKNESS,
)
# Bottom-right to center shadow
cv2.line(
frame,
(
center_x + half_size + HITMARKER_SHADOW_OFFSET,
center_y + half_size + HITMARKER_SHADOW_OFFSET,
),
(
center_x + HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
center_y + HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
),
HITMARKER_SHADOW_COLOR,
HITMARKER_THICKNESS,
)
# Draw main hitmarker
# Top-left to center
cv2.line(
frame,
(center_x - half_size, center_y - half_size),
(center_x - HITMARKER_GAP, center_y - HITMARKER_GAP),
color,
HITMARKER_THICKNESS,
)
# Top-right to center
cv2.line(
frame,
(center_x + half_size, center_y - half_size),
(center_x + HITMARKER_GAP, center_y - HITMARKER_GAP),
color,
HITMARKER_THICKNESS,
)
# Bottom-left to center
cv2.line(
frame,
(center_x - half_size, center_y + half_size),
(center_x - HITMARKER_GAP, center_y + HITMARKER_GAP),
color,
HITMARKER_THICKNESS,
)
# Bottom-right to center
cv2.line(
frame,
(center_x + half_size, center_y + half_size),
(center_x + HITMARKER_GAP, center_y + HITMARKER_GAP),
color,
HITMARKER_THICKNESS,
)
def draw_ad_boxes(frame, detected_objects, detect_keyword, box_style="censor"):
"""Draw detection visualizations over detected objects.
Args:
frame: The video frame to draw on
detected_objects: List of (box, keyword) tuples
detect_keyword: The detection keyword
box_style: Visualization style ('censor', 'bounding-box', or 'hitmarker')
"""
height, width = frame.shape[:2]
for box, keyword in detected_objects:
try:
# Convert normalized coordinates to pixel coordinates
x1 = int(box[0] * width)
y1 = int(box[1] * height)
x2 = int(box[2] * width)
y2 = int(box[3] * height)
# Ensure coordinates are within frame boundaries
x1 = max(0, min(x1, width - 1))
y1 = max(0, min(y1, height - 1))
x2 = max(0, min(x2, width - 1))
y2 = max(0, min(y2, height - 1))
# Only draw if box has reasonable size
if x2 > x1 and y2 > y1:
if box_style == "censor":
# Draw solid black rectangle
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 0), -1)
elif box_style == "bounding-box":
# Draw red rectangle with thicker line
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 3)
# Add label with background
label = detect_keyword # Use exact capitalization
label_size = cv2.getTextSize(label, FONT, 0.7, 2)[0]
cv2.rectangle(
frame, (x1, y1 - 25), (x1 + label_size[0], y1), (0, 0, 255), -1
)
cv2.putText(
frame,
label,
(x1, y1 - 6),
FONT,
0.7,
(255, 255, 255),
2,
cv2.LINE_AA,
)
elif box_style == "hitmarker":
# Calculate center of the box
center_x = (x1 + x2) // 2
center_y = (y1 + y2) // 2
# Draw hitmarker at the center
draw_hitmarker(frame, center_x, center_y)
# Optional: Add small label above hitmarker
label = detect_keyword # Use exact capitalization
label_size = cv2.getTextSize(label, FONT, 0.5, 1)[0]
cv2.putText(
frame,
label,
(center_x - label_size[0] // 2, center_y - HITMARKER_SIZE - 5),
FONT,
0.5,
HITMARKER_COLOR,
1,
cv2.LINE_AA,
)
except Exception as e:
print(f"Error drawing {box_style} style box: {str(e)}")
return frame
def filter_temporal_outliers(detections_dict):
"""Filter out extremely large detections that take up most of the frame.
Only keeps detections that are reasonable in size.
Args:
detections_dict: Dictionary of {frame_number: [(box, keyword), ...]}
"""
filtered_detections = {}
for t, detections in detections_dict.items():
# Only keep detections that aren't too large
valid_detections = []
for box, keyword in detections:
# Calculate box size as percentage of frame
width = box[2] - box[0]
height = box[3] - box[1]
area = width * height
# If box is less than 90% of frame, keep it
if area < 0.9:
valid_detections.append((box, keyword))
if valid_detections:
filtered_detections[t] = valid_detections
return filtered_detections
def describe_frames(
video_path, model, tokenizer, detect_keyword, test_mode=False, rows=1, cols=1
):
"""Extract and detect objects in frames."""
props = get_video_properties(video_path)
fps = props["fps"]
# If in test mode, only process first 3 seconds
if test_mode:
frame_count = min(int(fps * TEST_MODE_DURATION), props["frame_count"])
else:
frame_count = props["frame_count"]
ad_detections = {} # Store detection results by frame number
print("Extracting frames and detecting objects...")
video = cv2.VideoCapture(video_path)
# Process every frame
frame_count_processed = 0
with tqdm(total=frame_count) as pbar:
while frame_count_processed < frame_count:
ret, frame = video.read()
if not ret:
break
# Detect objects in the frame
detected_objects = detect_ads_in_frame(
model, tokenizer, frame, detect_keyword, rows=rows, cols=cols
)
# Store results for every frame, even if empty
ad_detections[frame_count_processed] = detected_objects
frame_count_processed += 1
pbar.update(1)
video.release()
if frame_count_processed == 0:
print("No frames could be read from video")
return {}
# Filter out only extremely large detections
ad_detections = filter_temporal_outliers(ad_detections)
return ad_detections
def create_detection_video(
video_path,
ad_detections,
detect_keyword,
output_path=None,
ffmpeg_preset="medium",
test_mode=False,
box_style="censor",
):
"""Create video with detection boxes."""
if output_path is None:
# Create outputs directory if it doesn't exist
outputs_dir = os.path.join(
os.path.dirname(os.path.abspath(__file__)), "outputs"
)
os.makedirs(outputs_dir, exist_ok=True)
# Clean the detect_keyword for filename
safe_keyword = "".join(
x for x in detect_keyword if x.isalnum() or x in (" ", "_", "-")
)
safe_keyword = safe_keyword.replace(" ", "_")
# Create output filename
base_name = os.path.splitext(os.path.basename(video_path))[0]
output_path = os.path.join(
outputs_dir, f"{box_style}_{safe_keyword}_{base_name}.mp4"
)
print(f"Will save output to: {output_path}")
props = get_video_properties(video_path)
fps, width, height = props["fps"], props["width"], props["height"]
# If in test mode, only process first few seconds
if test_mode:
frame_count = min(int(fps * TEST_MODE_DURATION), props["frame_count"])
else:
frame_count = props["frame_count"]
video = cv2.VideoCapture(video_path)
# Create temp output path by adding _temp before the extension
base, ext = os.path.splitext(output_path)
temp_output = f"{base}_temp{ext}"
out = cv2.VideoWriter(
temp_output, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height)
)
print("Creating detection video...")
frame_count_processed = 0
with tqdm(total=frame_count) as pbar:
while frame_count_processed < frame_count:
ret, frame = video.read()
if not ret:
break
# Get detections for this exact frame
if frame_count_processed in ad_detections:
current_detections = ad_detections[frame_count_processed]
if current_detections:
frame = draw_ad_boxes(
frame, current_detections, detect_keyword, box_style=box_style
)
out.write(frame)
frame_count_processed += 1
pbar.update(1)
video.release()
out.release()
# Convert to web-compatible format more efficiently
try:
subprocess.run(
[
"ffmpeg",
"-y",
"-i",
temp_output,
"-c:v",
"libx264",
"-preset",
ffmpeg_preset,
"-crf",
"23",
"-movflags",
"+faststart", # Better web playback
"-loglevel",
"error",
output_path,
],
check=True,
)
os.remove(temp_output) # Remove the temporary file
if not os.path.exists(output_path):
print(
f"Warning: FFmpeg completed but output file not found at {output_path}"
)
return None
return output_path
except subprocess.CalledProcessError as e:
print(f"Error running FFmpeg: {str(e)}")
if os.path.exists(temp_output):
os.remove(temp_output)
return None
def process_video(
video_path,
detect_keyword,
test_mode=False,
ffmpeg_preset="medium",
rows=1,
cols=1,
box_style="censor",
):
"""Process a single video file."""
print(f"\nProcessing: {video_path}")
print(f"Looking for: {detect_keyword}")
# Load model
print("Loading Moondream model...")
model, tokenizer = load_moondream()
# Process video - detect objects
ad_detections = describe_frames(
video_path, model, tokenizer, detect_keyword, test_mode, rows, cols
)
# Create video with detection boxes
output_path = create_detection_video(
video_path,
ad_detections,
detect_keyword,
ffmpeg_preset=ffmpeg_preset,
test_mode=test_mode,
box_style=box_style,
)
if output_path is None:
print("\nError: Failed to create output video")
return None
print(f"\nOutput saved to: {output_path}")
return output_path
def main():
"""Process all videos in the inputs directory."""
parser = argparse.ArgumentParser(
description="Detect objects in videos using Moondream2"
)
parser.add_argument(
"--test", action="store_true", help="Process only first 3 seconds of each video"
)
parser.add_argument(
"--preset",
choices=FFMPEG_PRESETS,
default="medium",
help="FFmpeg encoding preset (default: medium). Faster presets = lower quality",
)
parser.add_argument(
"--detect",
type=str,
default="face",
help='Object to detect in the video (default: face, use --detect "thing to detect" to override)',
)
parser.add_argument(
"--rows",
type=int,
default=1,
help="Number of rows to split each frame into (default: 1)",
)
parser.add_argument(
"--cols",
type=int,
default=1,
help="Number of columns to split each frame into (default: 1)",
)
parser.add_argument(
"--box-style",
choices=["censor", "bounding-box", "hitmarker"],
default="censor",
help="Style of detection visualization (default: censor)",
)
args = parser.parse_args()
input_dir = "inputs"
os.makedirs(input_dir, exist_ok=True)
os.makedirs("outputs", exist_ok=True)
video_files = [
f
for f in os.listdir(input_dir)
if f.lower().endswith((".mp4", ".avi", ".mov", ".mkv", ".webm"))
]
if not video_files:
print("No video files found in 'inputs' directory")
return
print(f"Found {len(video_files)} videos to process")
print(f"Will detect: {args.detect}")
if args.test:
print("Running in test mode - processing only first 3 seconds of each video")
print(f"Using FFmpeg preset: {args.preset}")
print(f"Grid size: {args.rows}x{args.cols}")
print(f"Box style: {args.box_style}")
success_count = 0
for video_file in video_files:
video_path = os.path.join(input_dir, video_file)
output_path = process_video(
video_path,
args.detect,
test_mode=args.test,
ffmpeg_preset=args.preset,
rows=args.rows,
cols=args.cols,
box_style=args.box_style,
)
if output_path:
success_count += 1
print(
f"\nProcessing complete. Successfully processed {success_count} out of {len(video_files)} videos."
)
if __name__ == "__main__":
main()
|