Spaces:
Running
on
Zero
Running
on
Zero
Update demo.py
Browse files
demo.py
CHANGED
@@ -8,10 +8,8 @@ import matplotlib
|
|
8 |
from PIL import Image
|
9 |
from transformers import AutoModelForCausalLM
|
10 |
|
11 |
-
|
12 |
matplotlib.use("Agg") # Use Agg backend for non-interactive plotting
|
13 |
|
14 |
-
|
15 |
os.environ["HF_TOKEN"] = os.environ.get("TOKEN_FROM_SECRET") or True
|
16 |
model = AutoModelForCausalLM.from_pretrained(
|
17 |
"vikhyatk/moondream-next",
|
@@ -21,9 +19,8 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
21 |
revision="56a3adeae60809e4269c544cde376feb20637ee0"
|
22 |
)
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
"""Visualization function with reduced whitespace"""
|
27 |
# Calculate figure size based on image aspect ratio
|
28 |
if image is not None:
|
29 |
height, width = image.shape[:2]
|
@@ -46,39 +43,42 @@ def visualize_gaze_multi(face_boxes, gaze_points, image=None, show_plot=True):
|
|
46 |
|
47 |
colors = plt.cm.rainbow(np.linspace(0, 1, len(face_boxes)))
|
48 |
|
49 |
-
for
|
50 |
hex_color = "#{:02x}{:02x}{:02x}".format(
|
51 |
int(color[0] * 255), int(color[1] * 255), int(color[2] * 255)
|
52 |
)
|
53 |
|
54 |
x, y, width_box, height_box = face_box
|
55 |
-
gaze_x, gaze_y = gaze_point
|
56 |
-
|
57 |
face_center_x = x + width_box / 2
|
58 |
face_center_y = y + height_box / 2
|
59 |
|
|
|
60 |
face_rect = plt.Rectangle(
|
61 |
(x, y), width_box, height_box, fill=False, color=hex_color, linewidth=2
|
62 |
)
|
63 |
ax.add_patch(face_rect)
|
64 |
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
67 |
|
68 |
-
|
69 |
-
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
|
80 |
-
|
81 |
-
|
82 |
|
83 |
# Set plot limits and remove axes
|
84 |
ax.set_xlim(0, width)
|
@@ -120,41 +120,43 @@ def process_image(input_image):
|
|
120 |
gaze_points = []
|
121 |
|
122 |
for face in faces:
|
123 |
-
|
124 |
-
"prioritize_accuracy": True,
|
125 |
-
"flip_enc_img": flip_enc_image
|
126 |
-
})["gaze"]
|
127 |
-
|
128 |
-
if gaze is None:
|
129 |
-
continue
|
130 |
-
|
131 |
face_box = (
|
132 |
face["x_min"] * pil_image.width,
|
133 |
face["y_min"] * pil_image.height,
|
134 |
(face["x_max"] - face["x_min"]) * pil_image.width,
|
135 |
(face["y_max"] - face["y_min"]) * pil_image.height,
|
136 |
)
|
|
|
137 |
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
|
|
142 |
|
143 |
-
|
144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
# Create visualization
|
147 |
image_array = np.array(pil_image)
|
148 |
-
fig =
|
149 |
face_boxes, gaze_points, image=image_array, show_plot=False
|
150 |
)
|
151 |
|
152 |
-
|
|
|
|
|
153 |
|
154 |
except Exception as e:
|
155 |
return None, f"Error processing image: {str(e)}"
|
156 |
|
157 |
-
|
158 |
with gr.Blocks(title="Moondream Gaze Detection") as app:
|
159 |
gr.Markdown("# π Moondream Gaze Detection")
|
160 |
gr.Markdown("Upload an image to detect faces and visualize their gaze directions.")
|
@@ -177,4 +179,4 @@ with gr.Blocks(title="Moondream Gaze Detection") as app:
|
|
177 |
)
|
178 |
|
179 |
if __name__ == "__main__":
|
180 |
-
app.launch()
|
|
|
8 |
from PIL import Image
|
9 |
from transformers import AutoModelForCausalLM
|
10 |
|
|
|
11 |
matplotlib.use("Agg") # Use Agg backend for non-interactive plotting
|
12 |
|
|
|
13 |
os.environ["HF_TOKEN"] = os.environ.get("TOKEN_FROM_SECRET") or True
|
14 |
model = AutoModelForCausalLM.from_pretrained(
|
15 |
"vikhyatk/moondream-next",
|
|
|
19 |
revision="56a3adeae60809e4269c544cde376feb20637ee0"
|
20 |
)
|
21 |
|
22 |
+
def visualize_faces_and_gaze(face_boxes, gaze_points=None, image=None, show_plot=True):
|
23 |
+
"""Visualization function that can handle faces without gaze data"""
|
|
|
24 |
# Calculate figure size based on image aspect ratio
|
25 |
if image is not None:
|
26 |
height, width = image.shape[:2]
|
|
|
43 |
|
44 |
colors = plt.cm.rainbow(np.linspace(0, 1, len(face_boxes)))
|
45 |
|
46 |
+
for i, (face_box, color) in enumerate(zip(face_boxes, colors)):
|
47 |
hex_color = "#{:02x}{:02x}{:02x}".format(
|
48 |
int(color[0] * 255), int(color[1] * 255), int(color[2] * 255)
|
49 |
)
|
50 |
|
51 |
x, y, width_box, height_box = face_box
|
|
|
|
|
52 |
face_center_x = x + width_box / 2
|
53 |
face_center_y = y + height_box / 2
|
54 |
|
55 |
+
# Draw face bounding box
|
56 |
face_rect = plt.Rectangle(
|
57 |
(x, y), width_box, height_box, fill=False, color=hex_color, linewidth=2
|
58 |
)
|
59 |
ax.add_patch(face_rect)
|
60 |
|
61 |
+
# Draw gaze line if gaze data is available
|
62 |
+
if gaze_points is not None and i < len(gaze_points) and gaze_points[i] is not None:
|
63 |
+
gaze_x, gaze_y = gaze_points[i]
|
64 |
+
|
65 |
+
points = 50
|
66 |
+
alphas = np.linspace(0.8, 0, points)
|
67 |
|
68 |
+
x_points = np.linspace(face_center_x, gaze_x, points)
|
69 |
+
y_points = np.linspace(face_center_y, gaze_y, points)
|
70 |
|
71 |
+
for j in range(points - 1):
|
72 |
+
ax.plot(
|
73 |
+
[x_points[j], x_points[j + 1]],
|
74 |
+
[y_points[j], y_points[j + 1]],
|
75 |
+
color=hex_color,
|
76 |
+
alpha=alphas[j],
|
77 |
+
linewidth=4,
|
78 |
+
)
|
79 |
|
80 |
+
ax.scatter(gaze_x, gaze_y, color=hex_color, s=100, zorder=5)
|
81 |
+
ax.scatter(gaze_x, gaze_y, color="white", s=50, zorder=6)
|
82 |
|
83 |
# Set plot limits and remove axes
|
84 |
ax.set_xlim(0, width)
|
|
|
120 |
gaze_points = []
|
121 |
|
122 |
for face in faces:
|
123 |
+
# Add face bounding box regardless of gaze detection
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
face_box = (
|
125 |
face["x_min"] * pil_image.width,
|
126 |
face["y_min"] * pil_image.height,
|
127 |
(face["x_max"] - face["x_min"]) * pil_image.width,
|
128 |
(face["y_max"] - face["y_min"]) * pil_image.height,
|
129 |
)
|
130 |
+
face_boxes.append(face_box)
|
131 |
|
132 |
+
# Try to detect gaze
|
133 |
+
gaze = model.detect_gaze(enc_image, face=face, unstable_settings={
|
134 |
+
"prioritize_accuracy": True,
|
135 |
+
"flip_enc_img": flip_enc_image
|
136 |
+
})["gaze"]
|
137 |
|
138 |
+
if gaze is not None:
|
139 |
+
gaze_point = (
|
140 |
+
gaze["x"] * pil_image.width,
|
141 |
+
gaze["y"] * pil_image.height,
|
142 |
+
)
|
143 |
+
gaze_points.append(gaze_point)
|
144 |
+
else:
|
145 |
+
gaze_points.append(None)
|
146 |
|
147 |
# Create visualization
|
148 |
image_array = np.array(pil_image)
|
149 |
+
fig = visualize_faces_and_gaze(
|
150 |
face_boxes, gaze_points, image=image_array, show_plot=False
|
151 |
)
|
152 |
|
153 |
+
faces_with_gaze = sum(1 for gp in gaze_points if gp is not None)
|
154 |
+
status = f"Detected {len(faces)} faces. {faces_with_gaze - len(faces)} faces identified as looking out of frame."
|
155 |
+
return fig, status
|
156 |
|
157 |
except Exception as e:
|
158 |
return None, f"Error processing image: {str(e)}"
|
159 |
|
|
|
160 |
with gr.Blocks(title="Moondream Gaze Detection") as app:
|
161 |
gr.Markdown("# π Moondream Gaze Detection")
|
162 |
gr.Markdown("Upload an image to detect faces and visualize their gaze directions.")
|
|
|
179 |
)
|
180 |
|
181 |
if __name__ == "__main__":
|
182 |
+
app.launch()
|