Spaces:
Build error
Build error
Commit
·
c5c1856
1
Parent(s):
0acc369
Add gradio app and monsterapi v2 client for SD Comparison gradio app.
Browse files- MonsterAPIClient.py +178 -0
- app.py +89 -0
MonsterAPIClient.py
ADDED
|
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#MonsterAPIClient.py
|
| 2 |
+
|
| 3 |
+
"""
|
| 4 |
+
Monster API Python client to connect to LLM models on monsterapi
|
| 5 |
+
|
| 6 |
+
Base URL: https://api.monsterapi.ai/v1/generate/{model}
|
| 7 |
+
|
| 8 |
+
Available models:
|
| 9 |
+
-----------------
|
| 10 |
+
|
| 11 |
+
LLMs:
|
| 12 |
+
1. falcon-7b-instruct
|
| 13 |
+
2. falcon-40b-instruct
|
| 14 |
+
3. mpt-30B-instruct
|
| 15 |
+
4. mpt-7b-instruct
|
| 16 |
+
5. openllama-13b-base
|
| 17 |
+
6. llama2-7b-chat
|
| 18 |
+
|
| 19 |
+
Text to Image:
|
| 20 |
+
1. stable-diffusion v1.5
|
| 21 |
+
2. stable-diffusion XL V1.0
|
| 22 |
+
|
| 23 |
+
"""
|
| 24 |
+
import os
|
| 25 |
+
import time
|
| 26 |
+
import logging
|
| 27 |
+
import requests
|
| 28 |
+
from requests_toolbelt.multipart.encoder import MultipartEncoder
|
| 29 |
+
|
| 30 |
+
from typing import Optional, Literal, Union, List, Dict
|
| 31 |
+
from pydantic import BaseModel, Field
|
| 32 |
+
|
| 33 |
+
logging.basicConfig(level=logging.INFO)
|
| 34 |
+
logger = logging.getLogger(__name__)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class LLMInputModel1(BaseModel):
|
| 38 |
+
"""
|
| 39 |
+
Supports Following models: Falcon-40B-instruct, Falcon-7B-instruct, openllama-13b-base, llama2-7b-chat
|
| 40 |
+
|
| 41 |
+
prompt string Prompt is a textual instruction for the model to produce an output. Required
|
| 42 |
+
top_k integer Top-k sampling helps improve quality by removing the tail and making it less likely to go off topic. Optional
|
| 43 |
+
(Default: 40)
|
| 44 |
+
top_p float Top-p sampling helps generate more diverse and creative text by considering a broader range of tokens. Optional
|
| 45 |
+
(Default: 1.0)
|
| 46 |
+
temp float The temperature influences the randomness of the next token predictions. Optional
|
| 47 |
+
(Default: 0.98)
|
| 48 |
+
max_length integer The maximum length of the generated text. Optional
|
| 49 |
+
(Default: 256)
|
| 50 |
+
repetition_penalty float The model uses this penalty to discourage the repetition of tokens in the output. Optional
|
| 51 |
+
(Default: 1.2)
|
| 52 |
+
beam_size integer The beam size for beam search. A larger beam size results in better quality output, but slower generation times. Optional
|
| 53 |
+
(Default: 1)
|
| 54 |
+
"""
|
| 55 |
+
prompt: str
|
| 56 |
+
top_k: int = 40
|
| 57 |
+
top_p: float = Field(0.9, ge=0., le=1.)
|
| 58 |
+
temp: float = Field(0.98, ge=0., le=1.)
|
| 59 |
+
max_length: int = 256
|
| 60 |
+
repetition_penalty: float = 1.2
|
| 61 |
+
beam_size: int = 1
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class LLMInputModel2(BaseModel):
|
| 65 |
+
"""
|
| 66 |
+
Supports Following models: MPT-30B-instruct, MPT-7B-instruct
|
| 67 |
+
|
| 68 |
+
prompt: string Instruction is a textual command for the model to produce an output. Required
|
| 69 |
+
top_k integer Top-k sampling helps improve quality by removing the tail and making it less likely to go off topic. Optional
|
| 70 |
+
(Default: 40)
|
| 71 |
+
top_p float Top-p sampling helps generate more diverse and creative text by considering a broader range of tokens. Optional
|
| 72 |
+
Allowed Range: 0 - 1
|
| 73 |
+
(Default: 1.0)
|
| 74 |
+
temp float Temperature is a parameter that controls the randomness of the model's output. The higher the temperature, the more random the output. Optional
|
| 75 |
+
(Default: 0.98)
|
| 76 |
+
max_length integer Maximum length of the generated output. Optional
|
| 77 |
+
(Default: 256)
|
| 78 |
+
"""
|
| 79 |
+
prompt: str
|
| 80 |
+
top_k: int = 40
|
| 81 |
+
top_p: float = Field(0.9, ge=0., le=1.)
|
| 82 |
+
temp: float = Field(0.98, ge=0., le=1.)
|
| 83 |
+
max_length: int = 256
|
| 84 |
+
|
| 85 |
+
class SDInputModel(BaseModel):
|
| 86 |
+
"""
|
| 87 |
+
Support following models: text2img, text2img-sdxl
|
| 88 |
+
|
| 89 |
+
prompt: string Your input text prompt Required
|
| 90 |
+
negprompt: string Negative text prompt Optional
|
| 91 |
+
samples: integer No. of images to be generated. Allowed range: 1-4 Optional
|
| 92 |
+
(Default: 1)
|
| 93 |
+
steps: integer Sampling steps per image. Allowed range 30-500 Optional
|
| 94 |
+
(Default: 30)
|
| 95 |
+
aspect_ratio: string. Allowed values: square, landscape, portrait Optional
|
| 96 |
+
(Default: square)
|
| 97 |
+
guidance_scale: float. Prompt guidance scale Optional
|
| 98 |
+
(Default: 7.5)
|
| 99 |
+
seed: integer Random number used to initialize the image generation. Optional
|
| 100 |
+
(Default: random)
|
| 101 |
+
"""
|
| 102 |
+
prompt: str
|
| 103 |
+
negprompt: Optional[str] = ""
|
| 104 |
+
samples: Optional[int] = Field(1, ge=1, le=4)
|
| 105 |
+
steps: Optional[int] = Field(30, ge=30, le=500)
|
| 106 |
+
aspect_ratio: Optional[Literal['square', 'landscape', 'portrait']] = 'square'
|
| 107 |
+
guidance_scale: Optional[float] = 7.5
|
| 108 |
+
seed: Optional[int] = None
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
MODELS_TO_DATAMODEL = {
|
| 112 |
+
'falcon-7b-instruct': LLMInputModel1,
|
| 113 |
+
'falcon-40b-instruct': LLMInputModel1,
|
| 114 |
+
'mpt-30B-instruct': LLMInputModel2,
|
| 115 |
+
'mpt-7b-instruct': LLMInputModel2,
|
| 116 |
+
'openllama-13b-base': LLMInputModel1,
|
| 117 |
+
'llama2-7b-chat': LLMInputModel1,
|
| 118 |
+
"sdxl-base": SDInputModel,
|
| 119 |
+
"txt2img": SDInputModel
|
| 120 |
+
}
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
class MClient():
|
| 124 |
+
def __init__(self):
|
| 125 |
+
self.boundary = '---011000010111000001101001'
|
| 126 |
+
self.auth_token = os.environ.get('MONSTER_API_KEY')
|
| 127 |
+
self.headers = {
|
| 128 |
+
"accept": "application/json",
|
| 129 |
+
"content-type": f"multipart/form-data; boundary={self.boundary}",
|
| 130 |
+
'Authorization': 'Bearer ' + self.auth_token}
|
| 131 |
+
self.base_url = 'https://api.monsterapi.ai/v1'
|
| 132 |
+
self.models_to_data_model = MODELS_TO_DATAMODEL
|
| 133 |
+
self.mock = os.environ.get('MOCK_Runner', "False").lower() == "true"
|
| 134 |
+
|
| 135 |
+
def get_response(self, model:Literal['falcon-7b-instruct', 'falcon-40b-instruct', 'mpt-30B-instruct', 'mpt-7b-instruct', 'openllama-13b-base', 'llama2-7b-chat'],
|
| 136 |
+
data: dict):
|
| 137 |
+
|
| 138 |
+
if model not in self.models_to_data_model:
|
| 139 |
+
raise ValueError(f"Invalid model: {model}!")
|
| 140 |
+
|
| 141 |
+
dataModel = self.models_to_data_model[model](**data)
|
| 142 |
+
url = f"{self.base_url}/generate/{model}"
|
| 143 |
+
data = dataModel.dict()
|
| 144 |
+
logger.info(f"Calling Monster API with url: {url}, with payload: {data}")
|
| 145 |
+
|
| 146 |
+
# convert all values into string
|
| 147 |
+
for key, value in data.items():
|
| 148 |
+
data[key] = str(value)
|
| 149 |
+
multipart_data = MultipartEncoder(fields=data, boundary=self.boundary)
|
| 150 |
+
response = requests.post(url, headers=self.headers, data=multipart_data)
|
| 151 |
+
response.raise_for_status()
|
| 152 |
+
return response.json()
|
| 153 |
+
|
| 154 |
+
def get_status(self, process_id):
|
| 155 |
+
# /v1/status/{process_id}
|
| 156 |
+
url = f"{self.base_url}/status/{process_id}"
|
| 157 |
+
response = requests.get(url, headers=self.headers)
|
| 158 |
+
response.raise_for_status()
|
| 159 |
+
return response.json()
|
| 160 |
+
|
| 161 |
+
def wait_and_get_result(self, process_id, timeout=100):
|
| 162 |
+
start_time = time.time()
|
| 163 |
+
while True:
|
| 164 |
+
elapsed_time = time.time() - start_time
|
| 165 |
+
|
| 166 |
+
if elapsed_time >= timeout:
|
| 167 |
+
raise TimeoutError(f"Process {process_id} timed out after {timeout} seconds.")
|
| 168 |
+
|
| 169 |
+
status = self.get_status(process_id)
|
| 170 |
+
if status['status'].lower() == 'completed':
|
| 171 |
+
return status['result']
|
| 172 |
+
elif status['status'].lower() == 'failed':
|
| 173 |
+
raise RuntimeError(f"Process {process_id} failed! {status}")
|
| 174 |
+
else:
|
| 175 |
+
if self.mock:
|
| 176 |
+
return 100 * "Mock Output!"
|
| 177 |
+
logger.info(f"Process {process_id} is still running, status is {status['status']}. Waiting ...")
|
| 178 |
+
time.sleep(0.01)
|
app.py
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import requests
|
| 4 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 5 |
+
from MonsterAPIClient import MClient
|
| 6 |
+
from typing import Tuple
|
| 7 |
+
|
| 8 |
+
client = MClient()
|
| 9 |
+
|
| 10 |
+
def generate_model_output(model: str, input_text: str, neg_prompt: str, samples: int, steps: int,
|
| 11 |
+
aspect_ratio: str, guidance_scale: float, random_seed: str) -> str:
|
| 12 |
+
"""
|
| 13 |
+
Generate output from a specific model.
|
| 14 |
+
|
| 15 |
+
Parameters:
|
| 16 |
+
model (str): The name of the model.
|
| 17 |
+
input_text (str): Your input text prompt.
|
| 18 |
+
neg_prompt (str): Negative text prompt.
|
| 19 |
+
samples (int): No. of images to be generated.
|
| 20 |
+
steps (int): Sampling steps per image.
|
| 21 |
+
aspect_ratio (str): Aspect ratio of the generated image.
|
| 22 |
+
guidance_scale (float): Prompt guidance scale.
|
| 23 |
+
random_seed (str): Random number used to initialize the image generation.
|
| 24 |
+
|
| 25 |
+
Returns:
|
| 26 |
+
str: The generated output text or image URL.
|
| 27 |
+
"""
|
| 28 |
+
try:
|
| 29 |
+
response = client.get_response(model, {
|
| 30 |
+
"prompt": input_text,
|
| 31 |
+
"negprompt": neg_prompt,
|
| 32 |
+
"samples": samples,
|
| 33 |
+
"steps": steps,
|
| 34 |
+
"aspect_ratio": aspect_ratio,
|
| 35 |
+
"guidance_scale": guidance_scale,
|
| 36 |
+
"seed": random_seed,
|
| 37 |
+
})
|
| 38 |
+
output = client.wait_and_get_result(response['process_id'])
|
| 39 |
+
if 'output' in output:
|
| 40 |
+
return output['output']
|
| 41 |
+
else:
|
| 42 |
+
return "No output available."
|
| 43 |
+
except Exception as e:
|
| 44 |
+
return f"Error occurred: {str(e)}"
|
| 45 |
+
|
| 46 |
+
def generate_output(input_text: str, neg_prompt: str, samples: int, steps: int,
|
| 47 |
+
aspect_ratio: str, guidance_scale: float, random_seed: str):
|
| 48 |
+
with ThreadPoolExecutor() as executor:
|
| 49 |
+
# Schedule the function calls asynchronously
|
| 50 |
+
future_sdxl_base = executor.submit(generate_model_output, 'sdxl-base', input_text, neg_prompt, samples, steps,
|
| 51 |
+
aspect_ratio, guidance_scale, random_seed)
|
| 52 |
+
future_txt2img = executor.submit(generate_model_output, 'txt2img', input_text, neg_prompt, samples, steps,
|
| 53 |
+
aspect_ratio, guidance_scale, random_seed)
|
| 54 |
+
|
| 55 |
+
# Get the results from the completed futures
|
| 56 |
+
sdxl_base_output = future_sdxl_base.result()
|
| 57 |
+
txt2img_output = future_txt2img.result()
|
| 58 |
+
|
| 59 |
+
return [sdxl_base_output, txt2img_output]
|
| 60 |
+
|
| 61 |
+
# Function to stitch
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
input_components = [
|
| 65 |
+
gr.inputs.Textbox(label="Input Prompt"),
|
| 66 |
+
gr.inputs.Textbox(label="Negative Prompt"),
|
| 67 |
+
gr.inputs.Slider(label="No. of Images to Generate", minimum=1, maximum=3, default=1),
|
| 68 |
+
gr.inputs.Slider(label="Sampling Steps per Image", minimum=30, maximum=40, default=30),
|
| 69 |
+
gr.inputs.Dropdown(label="Aspect Ratio", choices=["square", "landscape", "portrait"], default="square"),
|
| 70 |
+
gr.inputs.Slider(label="Prompt Guidance Scale", minimum=0.1, maximum=20.0, default=7.5),
|
| 71 |
+
gr.inputs.Textbox(label="Random Seed", default=random.randint(0, 1000000)),
|
| 72 |
+
]
|
| 73 |
+
|
| 74 |
+
output_component_sdxl_base = gr.Gallery(label="Stable Diffusion V2.0 Output", type="pil", container = True)
|
| 75 |
+
output_component_txt2img = gr.Gallery(label="Stable Diffusion V1.5 Output", type="pil", container = True)
|
| 76 |
+
|
| 77 |
+
interface = gr.Interface(
|
| 78 |
+
fn=generate_output,
|
| 79 |
+
inputs=input_components,
|
| 80 |
+
outputs=[output_component_sdxl_base, output_component_txt2img],
|
| 81 |
+
live=False,
|
| 82 |
+
capture_session=True,
|
| 83 |
+
title="Stable Diffusion Evaluation powered by MonsterAPI",
|
| 84 |
+
description="""This HuggingFace Space has been designed to help you compare the outputs between Stable-Diffusion V1.5 vs V2.0. These models are hosted on [MonsterAPI](https://monsterapi.ai/?utm_source=llm-evaluation&utm_medium=referral) - An AI infrastructure platform built for easily accessing AI models via scalable APIs and [finetuning LLMs](https://docs.monsterapi.ai/fine-tune-a-large-language-model-llm) at very low cost with our no-code implementation. MonsterAPI is powered by our low cost and highly scalable GPU computing platform - [Q Blocks](https://www.qblocks.cloud?utm_source=llm-evaluation&utm_medium=referral). These LLMs are accessible via scalable REST APIs. Checkout our [API documentation](https://documenter.getpostman.com/view/13759598/2s8ZDVZ3Yi) to integrate them in your AI powered applications.""",
|
| 85 |
+
css="body {background-color: black}"
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
# Launch the Gradio app
|
| 89 |
+
interface.launch()
|