Update src/streamlit_app.py
Browse files- src/streamlit_app.py +10 -6
src/streamlit_app.py
CHANGED
|
@@ -14,14 +14,16 @@ import streamlit as st
|
|
| 14 |
def load_models():
|
| 15 |
whisper_processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
|
| 16 |
whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
|
| 17 |
-
text_model = AutoModelForSequenceClassification.from_pretrained("
|
| 18 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
| 19 |
return whisper_processor, whisper_model, text_model, tokenizer
|
| 20 |
|
| 21 |
whisper_processor, whisper_model, text_model, tokenizer = load_models()
|
| 22 |
|
| 23 |
def transcribe(audio_path):
|
| 24 |
waveform, sample_rate = torchaudio.load(audio_path)
|
|
|
|
|
|
|
| 25 |
input_features = whisper_processor(waveform.squeeze().numpy(), sampling_rate=sample_rate, return_tensors="pt").input_features
|
| 26 |
predicted_ids = whisper_model.generate(input_features)
|
| 27 |
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
|
@@ -30,7 +32,8 @@ def transcribe(audio_path):
|
|
| 30 |
def extract_text_features(text):
|
| 31 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
| 32 |
outputs = text_model(**inputs)
|
| 33 |
-
|
|
|
|
| 34 |
|
| 35 |
def predict_hate_speech(audio_path=None, text=None):
|
| 36 |
if text:
|
|
@@ -50,12 +53,13 @@ text_input = st.text_input("Optional text input")
|
|
| 50 |
|
| 51 |
if st.button("Predict"):
|
| 52 |
if audio_file is not None:
|
| 53 |
-
|
|
|
|
| 54 |
f.write(audio_file.read())
|
| 55 |
-
prediction = predict_hate_speech(
|
| 56 |
st.success(prediction)
|
| 57 |
elif text_input:
|
| 58 |
prediction = predict_hate_speech(text=text_input)
|
| 59 |
st.success(prediction)
|
| 60 |
else:
|
| 61 |
-
st.warning("Please provide at least audio or text input.")
|
|
|
|
| 14 |
def load_models():
|
| 15 |
whisper_processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
|
| 16 |
whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
|
| 17 |
+
text_model = AutoModelForSequenceClassification.from_pretrained("Hate-speech-CNERG/dehatebert-mono-english")
|
| 18 |
+
tokenizer = AutoTokenizer.from_pretrained("Hate-speech-CNERG/dehatebert-mono-english")
|
| 19 |
return whisper_processor, whisper_model, text_model, tokenizer
|
| 20 |
|
| 21 |
whisper_processor, whisper_model, text_model, tokenizer = load_models()
|
| 22 |
|
| 23 |
def transcribe(audio_path):
|
| 24 |
waveform, sample_rate = torchaudio.load(audio_path)
|
| 25 |
+
if waveform.shape[0] > 1:
|
| 26 |
+
waveform = waveform.mean(dim=0, keepdim=True)
|
| 27 |
input_features = whisper_processor(waveform.squeeze().numpy(), sampling_rate=sample_rate, return_tensors="pt").input_features
|
| 28 |
predicted_ids = whisper_model.generate(input_features)
|
| 29 |
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
|
|
|
| 32 |
def extract_text_features(text):
|
| 33 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
| 34 |
outputs = text_model(**inputs)
|
| 35 |
+
prediction = outputs.logits.argmax(dim=1).item()
|
| 36 |
+
return prediction
|
| 37 |
|
| 38 |
def predict_hate_speech(audio_path=None, text=None):
|
| 39 |
if text:
|
|
|
|
| 53 |
|
| 54 |
if st.button("Predict"):
|
| 55 |
if audio_file is not None:
|
| 56 |
+
temp_path = "temp_audio.wav"
|
| 57 |
+
with open(temp_path, "wb") as f:
|
| 58 |
f.write(audio_file.read())
|
| 59 |
+
prediction = predict_hate_speech(temp_path, text_input)
|
| 60 |
st.success(prediction)
|
| 61 |
elif text_input:
|
| 62 |
prediction = predict_hate_speech(text=text_input)
|
| 63 |
st.success(prediction)
|
| 64 |
else:
|
| 65 |
+
st.warning("Please provide at least audio or text input.")
|