# Importing the requirements import warnings warnings.filterwarnings("ignore") import gradio as gr from src.minicpm.response import describe_image # Image, text query, and input parameters image = gr.Image(type="pil", label="Image") question = gr.Textbox(label="Question", placeholder="Enter your question here") temperature = gr.Slider( minimum=0.01, maximum=1.99, step=0.01, value=0.7, label="Temperature" ) top_p = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.8, label="Top P") top_k = gr.Slider(minimum=0, maximum=1000, step=1, value=100, label="Top K") max_new_tokens = gr.Slider(minimum=1, maximum=4096, step=1, value=512, label="Max Tokens") # Output for the interface answer = gr.Textbox(label="Predicted answer", show_label=True, show_copy_button=True) # Examples for the interface examples = [ [ "images/cat.jpg", "How many cats are there?", 0.7, 0.8, 100, 512, ], [ "images/dog.jpg", "¿De qué color es el perro?", 0.7, 0.8, 100, 512, ], [ "images/bird.jpg", "Que fait l'oiseau ?", 0.7, 0.8, 100, 512, ], ] # Title, description, and article for the interface title = "Visual Question Answering" description = "Gradio Demo for the MiniCPM-o 2.6: A GPT-4o Level MLLM for Vision, Speech and Multimodal Live Streaming. This model can answer questions about images in natural language. To use it, upload your image, type a question, select associated parameters, use the default values, click 'Submit', or click one of the examples to load them. You can read more at the links below." article = "

Model GitHub Repo | Model Page

" # Launch the interface interface = gr.Interface( fn=describe_image, inputs=[image, question, temperature, top_p, top_k, max_new_tokens], outputs=answer, examples=examples, cache_examples=True, cache_mode="lazy", title=title, description=description, article=article, theme="Glass", flagging_mode="never", ) interface.launch(debug=False)