File size: 1,884 Bytes
d49d27b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4118429
0220555
4b5dfcd
d49d27b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# Necessary imports
import sys
import gradio as gr
import spaces

# Local imports
from src.config import (
    device,
    model_name,
    system_prompt,
    sampling,
    stream,
    top_p,
    top_k,
    temperature,
    repetition_penalty,
    max_new_tokens,
)
from src.app.model import load_model_and_tokenizer
from src.logger import logging
from src.exception import CustomExceptionHandling


# Model and tokenizer
model, tokenizer = load_model_and_tokenizer(model_name, device)


@spaces.GPU(duration=120)
def describe_image(image: str, question: str) -> str:
    """
    Generates an answer to a given question based on the provided image and question.

    Args:
        - image (str): The path to the image file.
        - question (str): The question text.

    Returns:
        str: The generated answer to the question.
    """
    try:
        # Check if image or question is None
        if not image or not question:
            gr.Warning("Please provide an image and a question.")

        # Message format for the model
        msgs = [{"role": "user", "content": [image, question]}]

        # Generate the answer
        answer = model.chat(
            image=None,
            msgs=msgs,
            tokenizer=tokenizer,
            sampling=sampling,
            stream=stream,
            top_p=top_p,
            top_k=top_k,
            temperature=temperature,
            repetition_penalty=repetition_penalty,
            max_new_tokens=max_new_tokens,
            system_prompt=system_prompt,
        )

        # Log the successful generation of the answer
        logging.info("Answer generated successfully.")

        # Return the answer
        return "".join(answer)

    # Handle exceptions that may occur during answer generation
    except Exception as e:
        # Custom exception handling
        raise CustomExceptionHandling(e, sys) from e