Spaces:
Runtime error
Runtime error
File size: 1,465 Bytes
3464f3a 2924bfa 3464f3a 2924bfa 3464f3a 1f6f68a 3464f3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
# Importing the requirements
import torch
from transformers import AutoModel, AutoTokenizer
import spaces
# Device for the model
device = "cuda"
# Load the model and tokenizer
model = AutoModel.from_pretrained(
"openbmb/MiniCPM-V-2_6",
trust_remote_code=True,
attn_implementation="sdpa",
torch_dtype=torch.bfloat16,
)
model = model.to(device=device)
tokenizer = AutoTokenizer.from_pretrained(
"openbmb/MiniCPM-V-2_6", trust_remote_code=True
)
model.eval()
@spaces.GPU(duration=120)
def answer_question(image, question):
"""
Generates an answer to a given question based on the provided image and question.
Args:
- image (str): The path to the image file.
- question (str): The question text.
Returns:
str: The generated answer to the question.
"""
# Message format for the model
msgs = [{"role": "user", "content": [image, question]}]
# Generate the answer
res = model.chat(
image=None,
msgs=msgs,
tokenizer=tokenizer,
sampling=True,
temperature=0.7,
stream=True,
system_prompt="You are an AI assistant specialized in visual content analysis. Given an image and a related question, analyze the image thoroughly and provide a precise and informative answer based on the visible content. Ensure your response is clear, accurate, and directly addresses the question.",
)
# Return the answer
return "".join(res)
|