Spaces:
Sleeping
Sleeping
| import torchaudio | |
| import streamlit as st | |
| from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq | |
| # Load the ASR model and processor | |
| processor = AutoProcessor.from_pretrained("mohammed/whisper-large-arabic-cv-11") | |
| model = AutoModelForSpeechSeq2Seq.from_pretrained("mohammed/whisper-large-arabic-cv-11") | |
| audio_file = st.file_uploader("Upload Audio", type=["wav", "mp3", "m4a"]) | |
| st.title("Arabic ASR model") | |
| if st.sidebar.button("Transcribe Audio"): | |
| if audio_file is not None: | |
| st.sidebar.success("Transcribing Audio >>>>") | |
| # Load the audio file | |
| audio_tensor, sample_rate = torchaudio.load(audio_file) | |
| # Resample if necessary | |
| if sample_rate != 16000: | |
| resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000) | |
| audio_tensor = resampler(audio_tensor) | |
| # Convert the audio tensor to a numpy array | |
| audio_np = audio_tensor.squeeze().numpy() | |
| # Process the audio | |
| inputs = processor(audio_np, sampling_rate=16000, return_tensors="pt") | |
| # Generate transcription | |
| generated_ids = model.generate(inputs["input_features"]) | |
| transcription = processor.batch_decode(generated_ids, skip_special_tokens=True) | |
| # Display transcription | |
| st.sidebar.success("Transcription Complete!") | |
| st.text(transcription[0]) | |
| else: | |
| st.sidebar.error("Please upload a valid audio file") |