mohammed's picture
Create app.py
5d87326 verified
import torchaudio
import streamlit as st
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
# Load the ASR model and processor
processor = AutoProcessor.from_pretrained("mohammed/whisper-large-arabic-cv-11")
model = AutoModelForSpeechSeq2Seq.from_pretrained("mohammed/whisper-large-arabic-cv-11")
audio_file = st.file_uploader("Upload Audio", type=["wav", "mp3", "m4a"])
st.title("Arabic ASR model")
if st.sidebar.button("Transcribe Audio"):
if audio_file is not None:
st.sidebar.success("Transcribing Audio >>>>")
# Load the audio file
audio_tensor, sample_rate = torchaudio.load(audio_file)
# Resample if necessary
if sample_rate != 16000:
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
audio_tensor = resampler(audio_tensor)
# Convert the audio tensor to a numpy array
audio_np = audio_tensor.squeeze().numpy()
# Process the audio
inputs = processor(audio_np, sampling_rate=16000, return_tensors="pt")
# Generate transcription
generated_ids = model.generate(inputs["input_features"])
transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)
# Display transcription
st.sidebar.success("Transcription Complete!")
st.text(transcription[0])
else:
st.sidebar.error("Please upload a valid audio file")