Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
os.system('pip install modelscope')
|
| 3 |
+
os.system('pip install "modelscope[cv]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html')
|
| 4 |
+
import json
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from skimage import io
|
| 7 |
+
import gradio as gr
|
| 8 |
+
from modelscope_studio import encode_image, decode_image, call_demo_service
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
yes, no = "是", "否"
|
| 12 |
+
|
| 13 |
+
def get_size(h, w, max_size=720):
|
| 14 |
+
if min(h, w) > max_size:
|
| 15 |
+
if h > w:
|
| 16 |
+
h, w = int(max_size * h / w), max_size
|
| 17 |
+
else:
|
| 18 |
+
h, w = max_size, int(max_size * w / h)
|
| 19 |
+
return h, w
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def inference(img: Image, colorization_option: str, image_denoise_option: str, color_enhance_option: str) -> Image:
|
| 23 |
+
if img is None:
|
| 24 |
+
return None
|
| 25 |
+
w, h = img.size
|
| 26 |
+
h, w = get_size(h, w, 512)
|
| 27 |
+
img = img.resize((w, h))
|
| 28 |
+
|
| 29 |
+
input_url = encode_image(img)
|
| 30 |
+
res_url = input_url
|
| 31 |
+
|
| 32 |
+
# image-denoising (optional)
|
| 33 |
+
if image_denoise_option == yes:
|
| 34 |
+
data = {
|
| 35 |
+
"task": "image-denoising",
|
| 36 |
+
"inputs": [
|
| 37 |
+
res_url
|
| 38 |
+
],
|
| 39 |
+
"parameters":{},
|
| 40 |
+
"urlPaths": {
|
| 41 |
+
"inUrls": [
|
| 42 |
+
{
|
| 43 |
+
"value": res_url,
|
| 44 |
+
"fileType": "png",
|
| 45 |
+
"type": "image",
|
| 46 |
+
"displayType": "ImgUploader",
|
| 47 |
+
"validator": {
|
| 48 |
+
"accept": "*.jpeg,*.jpg,*.png",
|
| 49 |
+
"max_resolution": "5000*5000",
|
| 50 |
+
"max_size": "10m"
|
| 51 |
+
},
|
| 52 |
+
"name": "",
|
| 53 |
+
"title": ""
|
| 54 |
+
}
|
| 55 |
+
],
|
| 56 |
+
"outUrls": [
|
| 57 |
+
{
|
| 58 |
+
"outputKey": "output_img",
|
| 59 |
+
"type": "image"
|
| 60 |
+
}
|
| 61 |
+
]
|
| 62 |
+
}
|
| 63 |
+
}
|
| 64 |
+
result = call_demo_service(
|
| 65 |
+
path='damo', name='cv_nafnet_image-denoise_sidd', data=json.dumps(data))
|
| 66 |
+
print(f"image-denoising result: {result}")
|
| 67 |
+
res_url = result['data']['output_img']
|
| 68 |
+
|
| 69 |
+
# image-colorization (optional)
|
| 70 |
+
if colorization_option == yes:
|
| 71 |
+
data = {
|
| 72 |
+
"task": "image-colorization",
|
| 73 |
+
"inputs": [
|
| 74 |
+
res_url
|
| 75 |
+
],
|
| 76 |
+
"parameters":{},
|
| 77 |
+
"urlPaths": {
|
| 78 |
+
"inUrls": [
|
| 79 |
+
{
|
| 80 |
+
"value": res_url,
|
| 81 |
+
"fileType": "png",
|
| 82 |
+
"type": "image",
|
| 83 |
+
"displayType": "ImgUploader",
|
| 84 |
+
"validator": {
|
| 85 |
+
"accept": "*.jpeg,*.jpg,*.png",
|
| 86 |
+
"max_size": "10m",
|
| 87 |
+
"max_resolution": "5000*5000",
|
| 88 |
+
},
|
| 89 |
+
"name": "",
|
| 90 |
+
"title": ""
|
| 91 |
+
}
|
| 92 |
+
],
|
| 93 |
+
"outUrls": [
|
| 94 |
+
{
|
| 95 |
+
"outputKey": "output_img",
|
| 96 |
+
"type": "image"
|
| 97 |
+
}
|
| 98 |
+
]
|
| 99 |
+
}
|
| 100 |
+
}
|
| 101 |
+
result = call_demo_service(
|
| 102 |
+
path='damo', name='cv_ddcolor_image-colorization', data=json.dumps(data))
|
| 103 |
+
print(f"image-colorization result: {result}")
|
| 104 |
+
res_url = result['data']['output_img']
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
# image-portrait-enhancement
|
| 108 |
+
data = {
|
| 109 |
+
"task": "image-portrait-enhancement",
|
| 110 |
+
"inputs": [
|
| 111 |
+
res_url
|
| 112 |
+
],
|
| 113 |
+
"parameters":{},
|
| 114 |
+
"urlPaths": {
|
| 115 |
+
"inUrls": [
|
| 116 |
+
{
|
| 117 |
+
"value": res_url,
|
| 118 |
+
"fileType": "png",
|
| 119 |
+
"type": "image",
|
| 120 |
+
"displayType": "ImgUploader",
|
| 121 |
+
"validator": {
|
| 122 |
+
"accept": "*.jpeg,*.jpg,*.png",
|
| 123 |
+
"max_size": "10M",
|
| 124 |
+
"max_resolution": "2000*2000",
|
| 125 |
+
},
|
| 126 |
+
"name": "",
|
| 127 |
+
"title": ""
|
| 128 |
+
}
|
| 129 |
+
],
|
| 130 |
+
"outUrls": [
|
| 131 |
+
{
|
| 132 |
+
"outputKey": "output_img",
|
| 133 |
+
"type": "image"
|
| 134 |
+
}
|
| 135 |
+
]
|
| 136 |
+
}
|
| 137 |
+
}
|
| 138 |
+
result = call_demo_service(
|
| 139 |
+
path='damo', name='cv_gpen_image-portrait-enhancement', data=json.dumps(data))
|
| 140 |
+
print(f"image-portrait-enhancement result: {result}")
|
| 141 |
+
res_url = result['data']['output_img']
|
| 142 |
+
|
| 143 |
+
# image-color-enhancement (optional)
|
| 144 |
+
if color_enhance_option == yes:
|
| 145 |
+
data = {
|
| 146 |
+
"task": "image-color-enhancement",
|
| 147 |
+
"inputs": [
|
| 148 |
+
res_url
|
| 149 |
+
],
|
| 150 |
+
"parameters":{},
|
| 151 |
+
"urlPaths": {
|
| 152 |
+
"inUrls": [
|
| 153 |
+
{
|
| 154 |
+
"value": res_url,
|
| 155 |
+
"fileType": "png",
|
| 156 |
+
"type": "image",
|
| 157 |
+
"displayType": "ImgUploader",
|
| 158 |
+
"validator": {
|
| 159 |
+
"accept": "*.jpeg,*.jpg,*.png",
|
| 160 |
+
"max_size": "10m",
|
| 161 |
+
"max_resolution": "5000*5000",
|
| 162 |
+
},
|
| 163 |
+
"name": "",
|
| 164 |
+
"title": ""
|
| 165 |
+
}
|
| 166 |
+
],
|
| 167 |
+
"outUrls": [
|
| 168 |
+
{
|
| 169 |
+
"outputKey": "output_img",
|
| 170 |
+
"type": "image"
|
| 171 |
+
}
|
| 172 |
+
]
|
| 173 |
+
}
|
| 174 |
+
}
|
| 175 |
+
result = call_demo_service(
|
| 176 |
+
path='damo', name='cv_csrnet_image-color-enhance-models', data=json.dumps(data))
|
| 177 |
+
print(f"image-color-enhancement result: {result}")
|
| 178 |
+
res_url = result['data']['output_img']
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
res_img = decode_image(res_url)
|
| 182 |
+
|
| 183 |
+
return res_img
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
title = "AI老照片修复"
|
| 187 |
+
description = '''
|
| 188 |
+
输入一张老照片,点击一键修复,就能获得由AI完成画质增强、智能上色等处理后的彩色照片!还等什么呢?快让相册里的老照片坐上时光机吧~
|
| 189 |
+
'''
|
| 190 |
+
examples = [[os.path.dirname(__file__) + './images/input1.jpg'],
|
| 191 |
+
[os.path.dirname(__file__) + './images/input2.jpg'],
|
| 192 |
+
[os.path.dirname(__file__) + './images/input3.jpg'],
|
| 193 |
+
[os.path.dirname(__file__) + './images/input4.jpg'],
|
| 194 |
+
[os.path.dirname(__file__) + './images/input5.jpg']]
|
| 195 |
+
|
| 196 |
+
css_style = "#overview {margin: auto;max-width: 600px; max-height: 400px; width: 100%;}"
|
| 197 |
+
|
| 198 |
+
with gr.Blocks(title=title, css=css_style) as demo:
|
| 199 |
+
gr.HTML('''
|
| 200 |
+
<div style="text-align: center; max-width: 720px; margin: 0 auto;">
|
| 201 |
+
<img id="overview" alt="overview" src="https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/public/ModelScope/studio_old_photo_restoration/overview_long.gif" />
|
| 202 |
+
</div>
|
| 203 |
+
''')
|
| 204 |
+
gr.Markdown(description)
|
| 205 |
+
with gr.Row():
|
| 206 |
+
with gr.Column(scale=2):
|
| 207 |
+
img_input = gr.components.Image(label="图片", type="pil")
|
| 208 |
+
colorization_option = gr.components.Radio(label="重新上色", choices=[yes, no], value=yes)
|
| 209 |
+
image_denoise_option = gr.components.Radio(label="应用图像去噪(存在细节损失风险)", choices=[yes, no], value=no)
|
| 210 |
+
color_enhance_option = gr.components.Radio(label="应用色彩增强(存在罕见色调风险)", choices=[yes, no], value=no)
|
| 211 |
+
btn = gr.Button("一键修复")
|
| 212 |
+
with gr.Column(scale=3):
|
| 213 |
+
img_output = gr.components.Image(label="图片", type="pil").style(height=600)
|
| 214 |
+
inputs = [img_input, colorization_option, image_denoise_option, color_enhance_option]
|
| 215 |
+
btn.click(fn=inference, inputs=inputs, outputs=img_output)
|
| 216 |
+
gr.Examples(examples, inputs=img_input)
|
| 217 |
+
|
| 218 |
+
demo.launch()
|