import torch import comfy.model_management from kornia.morphology import dilation, erosion, opening, closing, gradient, top_hat, bottom_hat import kornia.color class Morphology: @classmethod def INPUT_TYPES(s): return {"required": {"image": ("IMAGE",), "operation": (["erode", "dilate", "open", "close", "gradient", "bottom_hat", "top_hat"],), "kernel_size": ("INT", {"default": 3, "min": 3, "max": 999, "step": 1}), }} RETURN_TYPES = ("IMAGE",) FUNCTION = "process" CATEGORY = "image/postprocessing" def process(self, image, operation, kernel_size): device = comfy.model_management.get_torch_device() kernel = torch.ones(kernel_size, kernel_size, device=device) image_k = image.to(device).movedim(-1, 1) if operation == "erode": output = erosion(image_k, kernel) elif operation == "dilate": output = dilation(image_k, kernel) elif operation == "open": output = opening(image_k, kernel) elif operation == "close": output = closing(image_k, kernel) elif operation == "gradient": output = gradient(image_k, kernel) elif operation == "top_hat": output = top_hat(image_k, kernel) elif operation == "bottom_hat": output = bottom_hat(image_k, kernel) else: raise ValueError(f"Invalid operation {operation} for morphology. Must be one of 'erode', 'dilate', 'open', 'close', 'gradient', 'tophat', 'bottomhat'") img_out = output.to(comfy.model_management.intermediate_device()).movedim(1, -1) return (img_out,) class ImageRGBToYUV: @classmethod def INPUT_TYPES(s): return {"required": { "image": ("IMAGE",), }} RETURN_TYPES = ("IMAGE", "IMAGE", "IMAGE") RETURN_NAMES = ("Y", "U", "V") FUNCTION = "execute" CATEGORY = "image/batch" def execute(self, image): out = kornia.color.rgb_to_ycbcr(image.movedim(-1, 1)).movedim(1, -1) return (out[..., 0:1].expand_as(image), out[..., 1:2].expand_as(image), out[..., 2:3].expand_as(image)) class ImageYUVToRGB: @classmethod def INPUT_TYPES(s): return {"required": {"Y": ("IMAGE",), "U": ("IMAGE",), "V": ("IMAGE",), }} RETURN_TYPES = ("IMAGE",) FUNCTION = "execute" CATEGORY = "image/batch" def execute(self, Y, U, V): image = torch.cat([torch.mean(Y, dim=-1, keepdim=True), torch.mean(U, dim=-1, keepdim=True), torch.mean(V, dim=-1, keepdim=True)], dim=-1) out = kornia.color.ycbcr_to_rgb(image.movedim(-1, 1)).movedim(1, -1) return (out,) NODE_CLASS_MAPPINGS = { "Morphology": Morphology, "ImageRGBToYUV": ImageRGBToYUV, "ImageYUVToRGB": ImageYUVToRGB, } NODE_DISPLAY_NAME_MAPPINGS = { "Morphology": "ImageMorphology", }