Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| from torch import einsum | |
| import torch.nn.functional as F | |
| import math | |
| from einops import rearrange, repeat | |
| from comfy.ldm.modules.attention import optimized_attention | |
| import comfy.samplers | |
| # from comfy/ldm/modules/attention.py | |
| # but modified to return attention scores as well as output | |
| def attention_basic_with_sim(q, k, v, heads, mask=None, attn_precision=None): | |
| b, _, dim_head = q.shape | |
| dim_head //= heads | |
| scale = dim_head ** -0.5 | |
| h = heads | |
| q, k, v = map( | |
| lambda t: t.unsqueeze(3) | |
| .reshape(b, -1, heads, dim_head) | |
| .permute(0, 2, 1, 3) | |
| .reshape(b * heads, -1, dim_head) | |
| .contiguous(), | |
| (q, k, v), | |
| ) | |
| # force cast to fp32 to avoid overflowing | |
| if attn_precision == torch.float32: | |
| sim = einsum('b i d, b j d -> b i j', q.float(), k.float()) * scale | |
| else: | |
| sim = einsum('b i d, b j d -> b i j', q, k) * scale | |
| del q, k | |
| if mask is not None: | |
| mask = rearrange(mask, 'b ... -> b (...)') | |
| max_neg_value = -torch.finfo(sim.dtype).max | |
| mask = repeat(mask, 'b j -> (b h) () j', h=h) | |
| sim.masked_fill_(~mask, max_neg_value) | |
| # attention, what we cannot get enough of | |
| sim = sim.softmax(dim=-1) | |
| out = einsum('b i j, b j d -> b i d', sim.to(v.dtype), v) | |
| out = ( | |
| out.unsqueeze(0) | |
| .reshape(b, heads, -1, dim_head) | |
| .permute(0, 2, 1, 3) | |
| .reshape(b, -1, heads * dim_head) | |
| ) | |
| return (out, sim) | |
| def create_blur_map(x0, attn, sigma=3.0, threshold=1.0): | |
| # reshape and GAP the attention map | |
| _, hw1, hw2 = attn.shape | |
| b, _, lh, lw = x0.shape | |
| attn = attn.reshape(b, -1, hw1, hw2) | |
| # Global Average Pool | |
| mask = attn.mean(1, keepdim=False).sum(1, keepdim=False) > threshold | |
| total = mask.shape[-1] | |
| x = round(math.sqrt((lh / lw) * total)) | |
| xx = None | |
| for i in range(0, math.floor(math.sqrt(total) / 2)): | |
| for j in [(x + i), max(1, x - i)]: | |
| if total % j == 0: | |
| xx = j | |
| break | |
| if xx is not None: | |
| break | |
| x = xx | |
| y = total // x | |
| # Reshape | |
| mask = ( | |
| mask.reshape(b, x, y) | |
| .unsqueeze(1) | |
| .type(attn.dtype) | |
| ) | |
| # Upsample | |
| mask = F.interpolate(mask, (lh, lw)) | |
| blurred = gaussian_blur_2d(x0, kernel_size=9, sigma=sigma) | |
| blurred = blurred * mask + x0 * (1 - mask) | |
| return blurred | |
| def gaussian_blur_2d(img, kernel_size, sigma): | |
| ksize_half = (kernel_size - 1) * 0.5 | |
| x = torch.linspace(-ksize_half, ksize_half, steps=kernel_size) | |
| pdf = torch.exp(-0.5 * (x / sigma).pow(2)) | |
| x_kernel = pdf / pdf.sum() | |
| x_kernel = x_kernel.to(device=img.device, dtype=img.dtype) | |
| kernel2d = torch.mm(x_kernel[:, None], x_kernel[None, :]) | |
| kernel2d = kernel2d.expand(img.shape[-3], 1, kernel2d.shape[0], kernel2d.shape[1]) | |
| padding = [kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2] | |
| img = F.pad(img, padding, mode="reflect") | |
| img = F.conv2d(img, kernel2d, groups=img.shape[-3]) | |
| return img | |
| class SelfAttentionGuidance: | |
| def INPUT_TYPES(s): | |
| return {"required": { "model": ("MODEL",), | |
| "scale": ("FLOAT", {"default": 0.5, "min": -2.0, "max": 5.0, "step": 0.01}), | |
| "blur_sigma": ("FLOAT", {"default": 2.0, "min": 0.0, "max": 10.0, "step": 0.1}), | |
| }} | |
| RETURN_TYPES = ("MODEL",) | |
| FUNCTION = "patch" | |
| CATEGORY = "_for_testing" | |
| def patch(self, model, scale, blur_sigma): | |
| m = model.clone() | |
| attn_scores = None | |
| # TODO: make this work properly with chunked batches | |
| # currently, we can only save the attn from one UNet call | |
| def attn_and_record(q, k, v, extra_options): | |
| nonlocal attn_scores | |
| # if uncond, save the attention scores | |
| heads = extra_options["n_heads"] | |
| cond_or_uncond = extra_options["cond_or_uncond"] | |
| b = q.shape[0] // len(cond_or_uncond) | |
| if 1 in cond_or_uncond: | |
| uncond_index = cond_or_uncond.index(1) | |
| # do the entire attention operation, but save the attention scores to attn_scores | |
| (out, sim) = attention_basic_with_sim(q, k, v, heads=heads, attn_precision=extra_options["attn_precision"]) | |
| # when using a higher batch size, I BELIEVE the result batch dimension is [uc1, ... ucn, c1, ... cn] | |
| n_slices = heads * b | |
| attn_scores = sim[n_slices * uncond_index:n_slices * (uncond_index+1)] | |
| return out | |
| else: | |
| return optimized_attention(q, k, v, heads=heads, attn_precision=extra_options["attn_precision"]) | |
| def post_cfg_function(args): | |
| nonlocal attn_scores | |
| uncond_attn = attn_scores | |
| sag_scale = scale | |
| sag_sigma = blur_sigma | |
| sag_threshold = 1.0 | |
| model = args["model"] | |
| uncond_pred = args["uncond_denoised"] | |
| uncond = args["uncond"] | |
| cfg_result = args["denoised"] | |
| sigma = args["sigma"] | |
| model_options = args["model_options"] | |
| x = args["input"] | |
| if min(cfg_result.shape[2:]) <= 4: #skip when too small to add padding | |
| return cfg_result | |
| # create the adversarially blurred image | |
| degraded = create_blur_map(uncond_pred, uncond_attn, sag_sigma, sag_threshold) | |
| degraded_noised = degraded + x - uncond_pred | |
| # call into the UNet | |
| (sag,) = comfy.samplers.calc_cond_batch(model, [uncond], degraded_noised, sigma, model_options) | |
| return cfg_result + (degraded - sag) * sag_scale | |
| m.set_model_sampler_post_cfg_function(post_cfg_function, disable_cfg1_optimization=True) | |
| # from diffusers: | |
| # unet.mid_block.attentions[0].transformer_blocks[0].attn1.patch | |
| m.set_model_attn1_replace(attn_and_record, "middle", 0, 0) | |
| return (m, ) | |
| NODE_CLASS_MAPPINGS = { | |
| "SelfAttentionGuidance": SelfAttentionGuidance, | |
| } | |
| NODE_DISPLAY_NAME_MAPPINGS = { | |
| "SelfAttentionGuidance": "Self-Attention Guidance", | |
| } | |