Spaces:
Running
on
Zero
Running
on
Zero
| #from: https://research.nvidia.com/labs/toronto-ai/AlignYourSteps/howto.html | |
| import numpy as np | |
| import torch | |
| def loglinear_interp(t_steps, num_steps): | |
| """ | |
| Performs log-linear interpolation of a given array of decreasing numbers. | |
| """ | |
| xs = np.linspace(0, 1, len(t_steps)) | |
| ys = np.log(t_steps[::-1]) | |
| new_xs = np.linspace(0, 1, num_steps) | |
| new_ys = np.interp(new_xs, xs, ys) | |
| interped_ys = np.exp(new_ys)[::-1].copy() | |
| return interped_ys | |
| NOISE_LEVELS = {"SD1": [14.6146412293, 6.4745760956, 3.8636745985, 2.6946151520, 1.8841921177, 1.3943805092, 0.9642583904, 0.6523686016, 0.3977456272, 0.1515232662, 0.0291671582], | |
| "SDXL":[14.6146412293, 6.3184485287, 3.7681790315, 2.1811480769, 1.3405244945, 0.8620721141, 0.5550693289, 0.3798540708, 0.2332364134, 0.1114188177, 0.0291671582], | |
| "SVD": [700.00, 54.5, 15.886, 7.977, 4.248, 1.789, 0.981, 0.403, 0.173, 0.034, 0.002]} | |
| class AlignYourStepsScheduler: | |
| def INPUT_TYPES(s): | |
| return {"required": | |
| {"model_type": (["SD1", "SDXL", "SVD"], ), | |
| "steps": ("INT", {"default": 10, "min": 1, "max": 10000}), | |
| "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), | |
| } | |
| } | |
| RETURN_TYPES = ("SIGMAS",) | |
| CATEGORY = "sampling/custom_sampling/schedulers" | |
| FUNCTION = "get_sigmas" | |
| def get_sigmas(self, model_type, steps, denoise): | |
| total_steps = steps | |
| if denoise < 1.0: | |
| if denoise <= 0.0: | |
| return (torch.FloatTensor([]),) | |
| total_steps = round(steps * denoise) | |
| sigmas = NOISE_LEVELS[model_type][:] | |
| if (steps + 1) != len(sigmas): | |
| sigmas = loglinear_interp(sigmas, steps + 1) | |
| sigmas = sigmas[-(total_steps + 1):] | |
| sigmas[-1] = 0 | |
| return (torch.FloatTensor(sigmas), ) | |
| NODE_CLASS_MAPPINGS = { | |
| "AlignYourStepsScheduler": AlignYourStepsScheduler, | |
| } | |