Spaces:
Running
on
Zero
Running
on
Zero
| from __future__ import annotations | |
| from .k_diffusion import sampling as k_diffusion_sampling | |
| from .extra_samplers import uni_pc | |
| from typing import TYPE_CHECKING, Callable, NamedTuple | |
| if TYPE_CHECKING: | |
| from comfy.model_patcher import ModelPatcher | |
| from comfy.model_base import BaseModel | |
| from comfy.controlnet import ControlBase | |
| import torch | |
| from functools import partial | |
| import collections | |
| from comfy import model_management | |
| import math | |
| import logging | |
| import comfy.sampler_helpers | |
| import comfy.model_patcher | |
| import comfy.patcher_extension | |
| import comfy.hooks | |
| import scipy.stats | |
| import numpy | |
| def add_area_dims(area, num_dims): | |
| while (len(area) // 2) < num_dims: | |
| area = [2147483648] + area[:len(area) // 2] + [0] + area[len(area) // 2:] | |
| return area | |
| def get_area_and_mult(conds, x_in, timestep_in): | |
| dims = tuple(x_in.shape[2:]) | |
| area = None | |
| strength = 1.0 | |
| if 'timestep_start' in conds: | |
| timestep_start = conds['timestep_start'] | |
| if timestep_in[0] > timestep_start: | |
| return None | |
| if 'timestep_end' in conds: | |
| timestep_end = conds['timestep_end'] | |
| if timestep_in[0] < timestep_end: | |
| return None | |
| if 'area' in conds: | |
| area = list(conds['area']) | |
| area = add_area_dims(area, len(dims)) | |
| if (len(area) // 2) > len(dims): | |
| area = area[:len(dims)] + area[len(area) // 2:(len(area) // 2) + len(dims)] | |
| if 'strength' in conds: | |
| strength = conds['strength'] | |
| input_x = x_in | |
| if area is not None: | |
| for i in range(len(dims)): | |
| area[i] = min(input_x.shape[i + 2] - area[len(dims) + i], area[i]) | |
| input_x = input_x.narrow(i + 2, area[len(dims) + i], area[i]) | |
| if 'mask' in conds: | |
| # Scale the mask to the size of the input | |
| # The mask should have been resized as we began the sampling process | |
| mask_strength = 1.0 | |
| if "mask_strength" in conds: | |
| mask_strength = conds["mask_strength"] | |
| mask = conds['mask'] | |
| assert (mask.shape[1:] == x_in.shape[2:]) | |
| mask = mask[:input_x.shape[0]] | |
| if area is not None: | |
| for i in range(len(dims)): | |
| mask = mask.narrow(i + 1, area[len(dims) + i], area[i]) | |
| mask = mask * mask_strength | |
| mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1) | |
| else: | |
| mask = torch.ones_like(input_x) | |
| mult = mask * strength | |
| if 'mask' not in conds and area is not None: | |
| fuzz = 8 | |
| for i in range(len(dims)): | |
| rr = min(fuzz, mult.shape[2 + i] // 4) | |
| if area[len(dims) + i] != 0: | |
| for t in range(rr): | |
| m = mult.narrow(i + 2, t, 1) | |
| m *= ((1.0 / rr) * (t + 1)) | |
| if (area[i] + area[len(dims) + i]) < x_in.shape[i + 2]: | |
| for t in range(rr): | |
| m = mult.narrow(i + 2, area[i] - 1 - t, 1) | |
| m *= ((1.0 / rr) * (t + 1)) | |
| conditioning = {} | |
| model_conds = conds["model_conds"] | |
| for c in model_conds: | |
| conditioning[c] = model_conds[c].process_cond(batch_size=x_in.shape[0], device=x_in.device, area=area) | |
| hooks = conds.get('hooks', None) | |
| control = conds.get('control', None) | |
| patches = None | |
| if 'gligen' in conds: | |
| gligen = conds['gligen'] | |
| patches = {} | |
| gligen_type = gligen[0] | |
| gligen_model = gligen[1] | |
| if gligen_type == "position": | |
| gligen_patch = gligen_model.model.set_position(input_x.shape, gligen[2], input_x.device) | |
| else: | |
| gligen_patch = gligen_model.model.set_empty(input_x.shape, input_x.device) | |
| patches['middle_patch'] = [gligen_patch] | |
| cond_obj = collections.namedtuple('cond_obj', ['input_x', 'mult', 'conditioning', 'area', 'control', 'patches', 'uuid', 'hooks']) | |
| return cond_obj(input_x, mult, conditioning, area, control, patches, conds['uuid'], hooks) | |
| def cond_equal_size(c1, c2): | |
| if c1 is c2: | |
| return True | |
| if c1.keys() != c2.keys(): | |
| return False | |
| for k in c1: | |
| if not c1[k].can_concat(c2[k]): | |
| return False | |
| return True | |
| def can_concat_cond(c1, c2): | |
| if c1.input_x.shape != c2.input_x.shape: | |
| return False | |
| def objects_concatable(obj1, obj2): | |
| if (obj1 is None) != (obj2 is None): | |
| return False | |
| if obj1 is not None: | |
| if obj1 is not obj2: | |
| return False | |
| return True | |
| if not objects_concatable(c1.control, c2.control): | |
| return False | |
| if not objects_concatable(c1.patches, c2.patches): | |
| return False | |
| return cond_equal_size(c1.conditioning, c2.conditioning) | |
| def cond_cat(c_list): | |
| temp = {} | |
| for x in c_list: | |
| for k in x: | |
| cur = temp.get(k, []) | |
| cur.append(x[k]) | |
| temp[k] = cur | |
| out = {} | |
| for k in temp: | |
| conds = temp[k] | |
| out[k] = conds[0].concat(conds[1:]) | |
| return out | |
| def finalize_default_conds(model: 'BaseModel', hooked_to_run: dict[comfy.hooks.HookGroup,list[tuple[tuple,int]]], default_conds: list[list[dict]], x_in, timestep, model_options): | |
| # need to figure out remaining unmasked area for conds | |
| default_mults = [] | |
| for _ in default_conds: | |
| default_mults.append(torch.ones_like(x_in)) | |
| # look through each finalized cond in hooked_to_run for 'mult' and subtract it from each cond | |
| for lora_hooks, to_run in hooked_to_run.items(): | |
| for cond_obj, i in to_run: | |
| # if no default_cond for cond_type, do nothing | |
| if len(default_conds[i]) == 0: | |
| continue | |
| area: list[int] = cond_obj.area | |
| if area is not None: | |
| curr_default_mult: torch.Tensor = default_mults[i] | |
| dims = len(area) // 2 | |
| for i in range(dims): | |
| curr_default_mult = curr_default_mult.narrow(i + 2, area[i + dims], area[i]) | |
| curr_default_mult -= cond_obj.mult | |
| else: | |
| default_mults[i] -= cond_obj.mult | |
| # for each default_mult, ReLU to make negatives=0, and then check for any nonzeros | |
| for i, mult in enumerate(default_mults): | |
| # if no default_cond for cond type, do nothing | |
| if len(default_conds[i]) == 0: | |
| continue | |
| torch.nn.functional.relu(mult, inplace=True) | |
| # if mult is all zeros, then don't add default_cond | |
| if torch.max(mult) == 0.0: | |
| continue | |
| cond = default_conds[i] | |
| for x in cond: | |
| # do get_area_and_mult to get all the expected values | |
| p = get_area_and_mult(x, x_in, timestep) | |
| if p is None: | |
| continue | |
| # replace p's mult with calculated mult | |
| p = p._replace(mult=mult) | |
| if p.hooks is not None: | |
| model.current_patcher.prepare_hook_patches_current_keyframe(timestep, p.hooks, model_options) | |
| hooked_to_run.setdefault(p.hooks, list()) | |
| hooked_to_run[p.hooks] += [(p, i)] | |
| def calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Tensor, timestep, model_options): | |
| executor = comfy.patcher_extension.WrapperExecutor.new_executor( | |
| _calc_cond_batch, | |
| comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.CALC_COND_BATCH, model_options, is_model_options=True) | |
| ) | |
| return executor.execute(model, conds, x_in, timestep, model_options) | |
| def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Tensor, timestep, model_options): | |
| out_conds = [] | |
| out_counts = [] | |
| # separate conds by matching hooks | |
| hooked_to_run: dict[comfy.hooks.HookGroup,list[tuple[tuple,int]]] = {} | |
| default_conds = [] | |
| has_default_conds = False | |
| for i in range(len(conds)): | |
| out_conds.append(torch.zeros_like(x_in)) | |
| out_counts.append(torch.ones_like(x_in) * 1e-37) | |
| cond = conds[i] | |
| default_c = [] | |
| if cond is not None: | |
| for x in cond: | |
| if 'default' in x: | |
| default_c.append(x) | |
| has_default_conds = True | |
| continue | |
| p = get_area_and_mult(x, x_in, timestep) | |
| if p is None: | |
| continue | |
| if p.hooks is not None: | |
| model.current_patcher.prepare_hook_patches_current_keyframe(timestep, p.hooks, model_options) | |
| hooked_to_run.setdefault(p.hooks, list()) | |
| hooked_to_run[p.hooks] += [(p, i)] | |
| default_conds.append(default_c) | |
| if has_default_conds: | |
| finalize_default_conds(model, hooked_to_run, default_conds, x_in, timestep, model_options) | |
| model.current_patcher.prepare_state(timestep) | |
| # run every hooked_to_run separately | |
| for hooks, to_run in hooked_to_run.items(): | |
| while len(to_run) > 0: | |
| first = to_run[0] | |
| first_shape = first[0][0].shape | |
| to_batch_temp = [] | |
| for x in range(len(to_run)): | |
| if can_concat_cond(to_run[x][0], first[0]): | |
| to_batch_temp += [x] | |
| to_batch_temp.reverse() | |
| to_batch = to_batch_temp[:1] | |
| free_memory = model_management.get_free_memory(x_in.device) | |
| for i in range(1, len(to_batch_temp) + 1): | |
| batch_amount = to_batch_temp[:len(to_batch_temp)//i] | |
| input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:] | |
| if model.memory_required(input_shape) * 1.5 < free_memory: | |
| to_batch = batch_amount | |
| break | |
| input_x = [] | |
| mult = [] | |
| c = [] | |
| cond_or_uncond = [] | |
| uuids = [] | |
| area = [] | |
| control = None | |
| patches = None | |
| for x in to_batch: | |
| o = to_run.pop(x) | |
| p = o[0] | |
| input_x.append(p.input_x) | |
| mult.append(p.mult) | |
| c.append(p.conditioning) | |
| area.append(p.area) | |
| cond_or_uncond.append(o[1]) | |
| uuids.append(p.uuid) | |
| control = p.control | |
| patches = p.patches | |
| batch_chunks = len(cond_or_uncond) | |
| input_x = torch.cat(input_x) | |
| c = cond_cat(c) | |
| timestep_ = torch.cat([timestep] * batch_chunks) | |
| transformer_options = model.current_patcher.apply_hooks(hooks=hooks) | |
| if 'transformer_options' in model_options: | |
| transformer_options = comfy.patcher_extension.merge_nested_dicts(transformer_options, | |
| model_options['transformer_options'], | |
| copy_dict1=False) | |
| if patches is not None: | |
| # TODO: replace with merge_nested_dicts function | |
| if "patches" in transformer_options: | |
| cur_patches = transformer_options["patches"].copy() | |
| for p in patches: | |
| if p in cur_patches: | |
| cur_patches[p] = cur_patches[p] + patches[p] | |
| else: | |
| cur_patches[p] = patches[p] | |
| transformer_options["patches"] = cur_patches | |
| else: | |
| transformer_options["patches"] = patches | |
| transformer_options["cond_or_uncond"] = cond_or_uncond[:] | |
| transformer_options["uuids"] = uuids[:] | |
| transformer_options["sigmas"] = timestep | |
| c['transformer_options'] = transformer_options | |
| if control is not None: | |
| c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond), transformer_options) | |
| if 'model_function_wrapper' in model_options: | |
| output = model_options['model_function_wrapper'](model.apply_model, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks) | |
| else: | |
| output = model.apply_model(input_x, timestep_, **c).chunk(batch_chunks) | |
| for o in range(batch_chunks): | |
| cond_index = cond_or_uncond[o] | |
| a = area[o] | |
| if a is None: | |
| out_conds[cond_index] += output[o] * mult[o] | |
| out_counts[cond_index] += mult[o] | |
| else: | |
| out_c = out_conds[cond_index] | |
| out_cts = out_counts[cond_index] | |
| dims = len(a) // 2 | |
| for i in range(dims): | |
| out_c = out_c.narrow(i + 2, a[i + dims], a[i]) | |
| out_cts = out_cts.narrow(i + 2, a[i + dims], a[i]) | |
| out_c += output[o] * mult[o] | |
| out_cts += mult[o] | |
| for i in range(len(out_conds)): | |
| out_conds[i] /= out_counts[i] | |
| return out_conds | |
| def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options): #TODO: remove | |
| logging.warning("WARNING: The comfy.samplers.calc_cond_uncond_batch function is deprecated please use the calc_cond_batch one instead.") | |
| return tuple(calc_cond_batch(model, [cond, uncond], x_in, timestep, model_options)) | |
| def cfg_function(model, cond_pred, uncond_pred, cond_scale, x, timestep, model_options={}, cond=None, uncond=None): | |
| if "sampler_cfg_function" in model_options: | |
| args = {"cond": x - cond_pred, "uncond": x - uncond_pred, "cond_scale": cond_scale, "timestep": timestep, "input": x, "sigma": timestep, | |
| "cond_denoised": cond_pred, "uncond_denoised": uncond_pred, "model": model, "model_options": model_options} | |
| cfg_result = x - model_options["sampler_cfg_function"](args) | |
| else: | |
| cfg_result = uncond_pred + (cond_pred - uncond_pred) * cond_scale | |
| for fn in model_options.get("sampler_post_cfg_function", []): | |
| args = {"denoised": cfg_result, "cond": cond, "uncond": uncond, "cond_scale": cond_scale, "model": model, "uncond_denoised": uncond_pred, "cond_denoised": cond_pred, | |
| "sigma": timestep, "model_options": model_options, "input": x} | |
| cfg_result = fn(args) | |
| return cfg_result | |
| #The main sampling function shared by all the samplers | |
| #Returns denoised | |
| def sampling_function(model, x, timestep, uncond, cond, cond_scale, model_options={}, seed=None): | |
| if math.isclose(cond_scale, 1.0) and model_options.get("disable_cfg1_optimization", False) == False: | |
| uncond_ = None | |
| else: | |
| uncond_ = uncond | |
| conds = [cond, uncond_] | |
| out = calc_cond_batch(model, conds, x, timestep, model_options) | |
| for fn in model_options.get("sampler_pre_cfg_function", []): | |
| args = {"conds":conds, "conds_out": out, "cond_scale": cond_scale, "timestep": timestep, | |
| "input": x, "sigma": timestep, "model": model, "model_options": model_options} | |
| out = fn(args) | |
| return cfg_function(model, out[0], out[1], cond_scale, x, timestep, model_options=model_options, cond=cond, uncond=uncond_) | |
| class KSamplerX0Inpaint: | |
| def __init__(self, model, sigmas): | |
| self.inner_model = model | |
| self.sigmas = sigmas | |
| def __call__(self, x, sigma, denoise_mask, model_options={}, seed=None): | |
| if denoise_mask is not None: | |
| if "denoise_mask_function" in model_options: | |
| denoise_mask = model_options["denoise_mask_function"](sigma, denoise_mask, extra_options={"model": self.inner_model, "sigmas": self.sigmas}) | |
| latent_mask = 1. - denoise_mask | |
| x = x * denoise_mask + self.inner_model.inner_model.scale_latent_inpaint(x=x, sigma=sigma, noise=self.noise, latent_image=self.latent_image) * latent_mask | |
| out = self.inner_model(x, sigma, model_options=model_options, seed=seed) | |
| if denoise_mask is not None: | |
| out = out * denoise_mask + self.latent_image * latent_mask | |
| return out | |
| def simple_scheduler(model_sampling, steps): | |
| s = model_sampling | |
| sigs = [] | |
| ss = len(s.sigmas) / steps | |
| for x in range(steps): | |
| sigs += [float(s.sigmas[-(1 + int(x * ss))])] | |
| sigs += [0.0] | |
| return torch.FloatTensor(sigs) | |
| def ddim_scheduler(model_sampling, steps): | |
| s = model_sampling | |
| sigs = [] | |
| x = 1 | |
| if math.isclose(float(s.sigmas[x]), 0, abs_tol=0.00001): | |
| steps += 1 | |
| sigs = [] | |
| else: | |
| sigs = [0.0] | |
| ss = max(len(s.sigmas) // steps, 1) | |
| while x < len(s.sigmas): | |
| sigs += [float(s.sigmas[x])] | |
| x += ss | |
| sigs = sigs[::-1] | |
| return torch.FloatTensor(sigs) | |
| def normal_scheduler(model_sampling, steps, sgm=False, floor=False): | |
| s = model_sampling | |
| start = s.timestep(s.sigma_max) | |
| end = s.timestep(s.sigma_min) | |
| append_zero = True | |
| if sgm: | |
| timesteps = torch.linspace(start, end, steps + 1)[:-1] | |
| else: | |
| if math.isclose(float(s.sigma(end)), 0, abs_tol=0.00001): | |
| steps += 1 | |
| append_zero = False | |
| timesteps = torch.linspace(start, end, steps) | |
| sigs = [] | |
| for x in range(len(timesteps)): | |
| ts = timesteps[x] | |
| sigs.append(float(s.sigma(ts))) | |
| if append_zero: | |
| sigs += [0.0] | |
| return torch.FloatTensor(sigs) | |
| # Implemented based on: https://arxiv.org/abs/2407.12173 | |
| def beta_scheduler(model_sampling, steps, alpha=0.6, beta=0.6): | |
| total_timesteps = (len(model_sampling.sigmas) - 1) | |
| ts = 1 - numpy.linspace(0, 1, steps, endpoint=False) | |
| ts = numpy.rint(scipy.stats.beta.ppf(ts, alpha, beta) * total_timesteps) | |
| sigs = [] | |
| last_t = -1 | |
| for t in ts: | |
| if t != last_t: | |
| sigs += [float(model_sampling.sigmas[int(t)])] | |
| last_t = t | |
| sigs += [0.0] | |
| return torch.FloatTensor(sigs) | |
| # from: https://github.com/genmoai/models/blob/main/src/mochi_preview/infer.py#L41 | |
| def linear_quadratic_schedule(model_sampling, steps, threshold_noise=0.025, linear_steps=None): | |
| if steps == 1: | |
| sigma_schedule = [1.0, 0.0] | |
| else: | |
| if linear_steps is None: | |
| linear_steps = steps // 2 | |
| linear_sigma_schedule = [i * threshold_noise / linear_steps for i in range(linear_steps)] | |
| threshold_noise_step_diff = linear_steps - threshold_noise * steps | |
| quadratic_steps = steps - linear_steps | |
| quadratic_coef = threshold_noise_step_diff / (linear_steps * quadratic_steps ** 2) | |
| linear_coef = threshold_noise / linear_steps - 2 * threshold_noise_step_diff / (quadratic_steps ** 2) | |
| const = quadratic_coef * (linear_steps ** 2) | |
| quadratic_sigma_schedule = [ | |
| quadratic_coef * (i ** 2) + linear_coef * i + const | |
| for i in range(linear_steps, steps) | |
| ] | |
| sigma_schedule = linear_sigma_schedule + quadratic_sigma_schedule + [1.0] | |
| sigma_schedule = [1.0 - x for x in sigma_schedule] | |
| return torch.FloatTensor(sigma_schedule) * model_sampling.sigma_max.cpu() | |
| # Referenced from https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15608 | |
| def kl_optimal_scheduler(n: int, sigma_min: float, sigma_max: float) -> torch.Tensor: | |
| adj_idxs = torch.arange(n, dtype=torch.float).div_(n - 1) | |
| sigmas = adj_idxs.new_zeros(n + 1) | |
| sigmas[:-1] = (adj_idxs * math.atan(sigma_min) + (1 - adj_idxs) * math.atan(sigma_max)).tan_() | |
| return sigmas | |
| def get_mask_aabb(masks): | |
| if masks.numel() == 0: | |
| return torch.zeros((0, 4), device=masks.device, dtype=torch.int) | |
| b = masks.shape[0] | |
| bounding_boxes = torch.zeros((b, 4), device=masks.device, dtype=torch.int) | |
| is_empty = torch.zeros((b), device=masks.device, dtype=torch.bool) | |
| for i in range(b): | |
| mask = masks[i] | |
| if mask.numel() == 0: | |
| continue | |
| if torch.max(mask != 0) == False: | |
| is_empty[i] = True | |
| continue | |
| y, x = torch.where(mask) | |
| bounding_boxes[i, 0] = torch.min(x) | |
| bounding_boxes[i, 1] = torch.min(y) | |
| bounding_boxes[i, 2] = torch.max(x) | |
| bounding_boxes[i, 3] = torch.max(y) | |
| return bounding_boxes, is_empty | |
| def resolve_areas_and_cond_masks_multidim(conditions, dims, device): | |
| # We need to decide on an area outside the sampling loop in order to properly generate opposite areas of equal sizes. | |
| # While we're doing this, we can also resolve the mask device and scaling for performance reasons | |
| for i in range(len(conditions)): | |
| c = conditions[i] | |
| if 'area' in c: | |
| area = c['area'] | |
| if area[0] == "percentage": | |
| modified = c.copy() | |
| a = area[1:] | |
| a_len = len(a) // 2 | |
| area = () | |
| for d in range(len(dims)): | |
| area += (max(1, round(a[d] * dims[d])),) | |
| for d in range(len(dims)): | |
| area += (round(a[d + a_len] * dims[d]),) | |
| modified['area'] = area | |
| c = modified | |
| conditions[i] = c | |
| if 'mask' in c: | |
| mask = c['mask'] | |
| mask = mask.to(device=device) | |
| modified = c.copy() | |
| if len(mask.shape) == len(dims): | |
| mask = mask.unsqueeze(0) | |
| if mask.shape[1:] != dims: | |
| mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=dims, mode='bilinear', align_corners=False).squeeze(1) | |
| if modified.get("set_area_to_bounds", False): #TODO: handle dim != 2 | |
| bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0) | |
| boxes, is_empty = get_mask_aabb(bounds) | |
| if is_empty[0]: | |
| # Use the minimum possible size for efficiency reasons. (Since the mask is all-0, this becomes a noop anyway) | |
| modified['area'] = (8, 8, 0, 0) | |
| else: | |
| box = boxes[0] | |
| H, W, Y, X = (box[3] - box[1] + 1, box[2] - box[0] + 1, box[1], box[0]) | |
| H = max(8, H) | |
| W = max(8, W) | |
| area = (int(H), int(W), int(Y), int(X)) | |
| modified['area'] = area | |
| modified['mask'] = mask | |
| conditions[i] = modified | |
| def resolve_areas_and_cond_masks(conditions, h, w, device): | |
| logging.warning("WARNING: The comfy.samplers.resolve_areas_and_cond_masks function is deprecated please use the resolve_areas_and_cond_masks_multidim one instead.") | |
| return resolve_areas_and_cond_masks_multidim(conditions, [h, w], device) | |
| def create_cond_with_same_area_if_none(conds, c): | |
| if 'area' not in c: | |
| return | |
| def area_inside(a, area_cmp): | |
| a = add_area_dims(a, len(area_cmp) // 2) | |
| area_cmp = add_area_dims(area_cmp, len(a) // 2) | |
| a_l = len(a) // 2 | |
| area_cmp_l = len(area_cmp) // 2 | |
| for i in range(min(a_l, area_cmp_l)): | |
| if a[a_l + i] < area_cmp[area_cmp_l + i]: | |
| return False | |
| for i in range(min(a_l, area_cmp_l)): | |
| if (a[i] + a[a_l + i]) > (area_cmp[i] + area_cmp[area_cmp_l + i]): | |
| return False | |
| return True | |
| c_area = c['area'] | |
| smallest = None | |
| for x in conds: | |
| if 'area' in x: | |
| a = x['area'] | |
| if area_inside(c_area, a): | |
| if smallest is None: | |
| smallest = x | |
| elif 'area' not in smallest: | |
| smallest = x | |
| else: | |
| if math.prod(smallest['area'][:len(smallest['area']) // 2]) > math.prod(a[:len(a) // 2]): | |
| smallest = x | |
| else: | |
| if smallest is None: | |
| smallest = x | |
| if smallest is None: | |
| return | |
| if 'area' in smallest: | |
| if smallest['area'] == c_area: | |
| return | |
| out = c.copy() | |
| out['model_conds'] = smallest['model_conds'].copy() #TODO: which fields should be copied? | |
| conds += [out] | |
| def calculate_start_end_timesteps(model, conds): | |
| s = model.model_sampling | |
| for t in range(len(conds)): | |
| x = conds[t] | |
| timestep_start = None | |
| timestep_end = None | |
| # handle clip hook schedule, if needed | |
| if 'clip_start_percent' in x: | |
| timestep_start = s.percent_to_sigma(max(x['clip_start_percent'], x.get('start_percent', 0.0))) | |
| timestep_end = s.percent_to_sigma(min(x['clip_end_percent'], x.get('end_percent', 1.0))) | |
| else: | |
| if 'start_percent' in x: | |
| timestep_start = s.percent_to_sigma(x['start_percent']) | |
| if 'end_percent' in x: | |
| timestep_end = s.percent_to_sigma(x['end_percent']) | |
| if (timestep_start is not None) or (timestep_end is not None): | |
| n = x.copy() | |
| if (timestep_start is not None): | |
| n['timestep_start'] = timestep_start | |
| if (timestep_end is not None): | |
| n['timestep_end'] = timestep_end | |
| conds[t] = n | |
| def pre_run_control(model, conds): | |
| s = model.model_sampling | |
| for t in range(len(conds)): | |
| x = conds[t] | |
| percent_to_timestep_function = lambda a: s.percent_to_sigma(a) | |
| if 'control' in x: | |
| x['control'].pre_run(model, percent_to_timestep_function) | |
| def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func): | |
| cond_cnets = [] | |
| cond_other = [] | |
| uncond_cnets = [] | |
| uncond_other = [] | |
| for t in range(len(conds)): | |
| x = conds[t] | |
| if 'area' not in x: | |
| if name in x and x[name] is not None: | |
| cond_cnets.append(x[name]) | |
| else: | |
| cond_other.append((x, t)) | |
| for t in range(len(uncond)): | |
| x = uncond[t] | |
| if 'area' not in x: | |
| if name in x and x[name] is not None: | |
| uncond_cnets.append(x[name]) | |
| else: | |
| uncond_other.append((x, t)) | |
| if len(uncond_cnets) > 0: | |
| return | |
| for x in range(len(cond_cnets)): | |
| temp = uncond_other[x % len(uncond_other)] | |
| o = temp[0] | |
| if name in o and o[name] is not None: | |
| n = o.copy() | |
| n[name] = uncond_fill_func(cond_cnets, x) | |
| uncond += [n] | |
| else: | |
| n = o.copy() | |
| n[name] = uncond_fill_func(cond_cnets, x) | |
| uncond[temp[1]] = n | |
| def encode_model_conds(model_function, conds, noise, device, prompt_type, **kwargs): | |
| for t in range(len(conds)): | |
| x = conds[t] | |
| params = x.copy() | |
| params["device"] = device | |
| params["noise"] = noise | |
| default_width = None | |
| if len(noise.shape) >= 4: #TODO: 8 multiple should be set by the model | |
| default_width = noise.shape[3] * 8 | |
| params["width"] = params.get("width", default_width) | |
| params["height"] = params.get("height", noise.shape[2] * 8) | |
| params["prompt_type"] = params.get("prompt_type", prompt_type) | |
| for k in kwargs: | |
| if k not in params: | |
| params[k] = kwargs[k] | |
| out = model_function(**params) | |
| x = x.copy() | |
| model_conds = x['model_conds'].copy() | |
| for k in out: | |
| model_conds[k] = out[k] | |
| x['model_conds'] = model_conds | |
| conds[t] = x | |
| return conds | |
| class Sampler: | |
| def sample(self): | |
| pass | |
| def max_denoise(self, model_wrap, sigmas): | |
| max_sigma = float(model_wrap.inner_model.model_sampling.sigma_max) | |
| sigma = float(sigmas[0]) | |
| return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma | |
| KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_cfg_pp", "heun", "heunpp2","dpm_2", "dpm_2_ancestral", | |
| "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_2s_ancestral_cfg_pp", "dpmpp_sde", "dpmpp_sde_gpu", | |
| "dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm", | |
| "ipndm", "ipndm_v", "deis", "res_multistep", "res_multistep_cfg_pp", "res_multistep_ancestral", "res_multistep_ancestral_cfg_pp", | |
| "gradient_estimation", "er_sde"] | |
| class KSAMPLER(Sampler): | |
| def __init__(self, sampler_function, extra_options={}, inpaint_options={}): | |
| self.sampler_function = sampler_function | |
| self.extra_options = extra_options | |
| self.inpaint_options = inpaint_options | |
| def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False): | |
| extra_args["denoise_mask"] = denoise_mask | |
| model_k = KSamplerX0Inpaint(model_wrap, sigmas) | |
| model_k.latent_image = latent_image | |
| if self.inpaint_options.get("random", False): #TODO: Should this be the default? | |
| generator = torch.manual_seed(extra_args.get("seed", 41) + 1) | |
| model_k.noise = torch.randn(noise.shape, generator=generator, device="cpu").to(noise.dtype).to(noise.device) | |
| else: | |
| model_k.noise = noise | |
| noise = model_wrap.inner_model.model_sampling.noise_scaling(sigmas[0], noise, latent_image, self.max_denoise(model_wrap, sigmas)) | |
| k_callback = None | |
| total_steps = len(sigmas) - 1 | |
| if callback is not None: | |
| k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps) | |
| samples = self.sampler_function(model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar, **self.extra_options) | |
| samples = model_wrap.inner_model.model_sampling.inverse_noise_scaling(sigmas[-1], samples) | |
| return samples | |
| def ksampler(sampler_name, extra_options={}, inpaint_options={}): | |
| if sampler_name == "dpm_fast": | |
| def dpm_fast_function(model, noise, sigmas, extra_args, callback, disable): | |
| if len(sigmas) <= 1: | |
| return noise | |
| sigma_min = sigmas[-1] | |
| if sigma_min == 0: | |
| sigma_min = sigmas[-2] | |
| total_steps = len(sigmas) - 1 | |
| return k_diffusion_sampling.sample_dpm_fast(model, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=callback, disable=disable) | |
| sampler_function = dpm_fast_function | |
| elif sampler_name == "dpm_adaptive": | |
| def dpm_adaptive_function(model, noise, sigmas, extra_args, callback, disable, **extra_options): | |
| if len(sigmas) <= 1: | |
| return noise | |
| sigma_min = sigmas[-1] | |
| if sigma_min == 0: | |
| sigma_min = sigmas[-2] | |
| return k_diffusion_sampling.sample_dpm_adaptive(model, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=callback, disable=disable, **extra_options) | |
| sampler_function = dpm_adaptive_function | |
| else: | |
| sampler_function = getattr(k_diffusion_sampling, "sample_{}".format(sampler_name)) | |
| return KSAMPLER(sampler_function, extra_options, inpaint_options) | |
| def process_conds(model, noise, conds, device, latent_image=None, denoise_mask=None, seed=None): | |
| for k in conds: | |
| conds[k] = conds[k][:] | |
| resolve_areas_and_cond_masks_multidim(conds[k], noise.shape[2:], device) | |
| for k in conds: | |
| calculate_start_end_timesteps(model, conds[k]) | |
| if hasattr(model, 'extra_conds'): | |
| for k in conds: | |
| conds[k] = encode_model_conds(model.extra_conds, conds[k], noise, device, k, latent_image=latent_image, denoise_mask=denoise_mask, seed=seed) | |
| #make sure each cond area has an opposite one with the same area | |
| for k in conds: | |
| for c in conds[k]: | |
| for kk in conds: | |
| if k != kk: | |
| create_cond_with_same_area_if_none(conds[kk], c) | |
| for k in conds: | |
| for c in conds[k]: | |
| if 'hooks' in c: | |
| for hook in c['hooks'].hooks: | |
| hook.initialize_timesteps(model) | |
| for k in conds: | |
| pre_run_control(model, conds[k]) | |
| if "positive" in conds: | |
| positive = conds["positive"] | |
| for k in conds: | |
| if k != "positive": | |
| apply_empty_x_to_equal_area(list(filter(lambda c: c.get('control_apply_to_uncond', False) == True, positive)), conds[k], 'control', lambda cond_cnets, x: cond_cnets[x]) | |
| apply_empty_x_to_equal_area(positive, conds[k], 'gligen', lambda cond_cnets, x: cond_cnets[x]) | |
| return conds | |
| def preprocess_conds_hooks(conds: dict[str, list[dict[str]]]): | |
| # determine which ControlNets have extra_hooks that should be combined with normal hooks | |
| hook_replacement: dict[tuple[ControlBase, comfy.hooks.HookGroup], list[dict]] = {} | |
| for k in conds: | |
| for kk in conds[k]: | |
| if 'control' in kk: | |
| control: 'ControlBase' = kk['control'] | |
| extra_hooks = control.get_extra_hooks() | |
| if len(extra_hooks) > 0: | |
| hooks: comfy.hooks.HookGroup = kk.get('hooks', None) | |
| to_replace = hook_replacement.setdefault((control, hooks), []) | |
| to_replace.append(kk) | |
| # if nothing to replace, do nothing | |
| if len(hook_replacement) == 0: | |
| return | |
| # for optimal sampling performance, common ControlNets + hook combos should have identical hooks | |
| # on the cond dicts | |
| for key, conds_to_modify in hook_replacement.items(): | |
| control = key[0] | |
| hooks = key[1] | |
| hooks = comfy.hooks.HookGroup.combine_all_hooks(control.get_extra_hooks() + [hooks]) | |
| # if combined hooks are not None, set as new hooks for all relevant conds | |
| if hooks is not None: | |
| for cond in conds_to_modify: | |
| cond['hooks'] = hooks | |
| def filter_registered_hooks_on_conds(conds: dict[str, list[dict[str]]], model_options: dict[str]): | |
| '''Modify 'hooks' on conds so that only hooks that were registered remain. Properly accounts for | |
| HookGroups that have the same reference.''' | |
| registered: comfy.hooks.HookGroup = model_options.get('registered_hooks', None) | |
| # if None were registered, make sure all hooks are cleaned from conds | |
| if registered is None: | |
| for k in conds: | |
| for kk in conds[k]: | |
| kk.pop('hooks', None) | |
| return | |
| # find conds that contain hooks to be replaced - group by common HookGroup refs | |
| hook_replacement: dict[comfy.hooks.HookGroup, list[dict]] = {} | |
| for k in conds: | |
| for kk in conds[k]: | |
| hooks: comfy.hooks.HookGroup = kk.get('hooks', None) | |
| if hooks is not None: | |
| if not hooks.is_subset_of(registered): | |
| to_replace = hook_replacement.setdefault(hooks, []) | |
| to_replace.append(kk) | |
| # for each hook to replace, create a new proper HookGroup and assign to all common conds | |
| for hooks, conds_to_modify in hook_replacement.items(): | |
| new_hooks = hooks.new_with_common_hooks(registered) | |
| if len(new_hooks) == 0: | |
| new_hooks = None | |
| for kk in conds_to_modify: | |
| kk['hooks'] = new_hooks | |
| def get_total_hook_groups_in_conds(conds: dict[str, list[dict[str]]]): | |
| hooks_set = set() | |
| for k in conds: | |
| for kk in conds[k]: | |
| hooks_set.add(kk.get('hooks', None)) | |
| return len(hooks_set) | |
| def cast_to_load_options(model_options: dict[str], device=None, dtype=None): | |
| ''' | |
| If any patches from hooks, wrappers, or callbacks have .to to be called, call it. | |
| ''' | |
| if model_options is None: | |
| return | |
| to_load_options = model_options.get("to_load_options", None) | |
| if to_load_options is None: | |
| return | |
| casts = [] | |
| if device is not None: | |
| casts.append(device) | |
| if dtype is not None: | |
| casts.append(dtype) | |
| # if nothing to apply, do nothing | |
| if len(casts) == 0: | |
| return | |
| # try to call .to on patches | |
| if "patches" in to_load_options: | |
| patches = to_load_options["patches"] | |
| for name in patches: | |
| patch_list = patches[name] | |
| for i in range(len(patch_list)): | |
| if hasattr(patch_list[i], "to"): | |
| for cast in casts: | |
| patch_list[i] = patch_list[i].to(cast) | |
| if "patches_replace" in to_load_options: | |
| patches = to_load_options["patches_replace"] | |
| for name in patches: | |
| patch_list = patches[name] | |
| for k in patch_list: | |
| if hasattr(patch_list[k], "to"): | |
| for cast in casts: | |
| patch_list[k] = patch_list[k].to(cast) | |
| # try to call .to on any wrappers/callbacks | |
| wrappers_and_callbacks = ["wrappers", "callbacks"] | |
| for wc_name in wrappers_and_callbacks: | |
| if wc_name in to_load_options: | |
| wc: dict[str, list] = to_load_options[wc_name] | |
| for wc_dict in wc.values(): | |
| for wc_list in wc_dict.values(): | |
| for i in range(len(wc_list)): | |
| if hasattr(wc_list[i], "to"): | |
| for cast in casts: | |
| wc_list[i] = wc_list[i].to(cast) | |
| class CFGGuider: | |
| def __init__(self, model_patcher: ModelPatcher): | |
| self.model_patcher = model_patcher | |
| self.model_options = model_patcher.model_options | |
| self.original_conds = {} | |
| self.cfg = 1.0 | |
| def set_conds(self, positive, negative): | |
| self.inner_set_conds({"positive": positive, "negative": negative}) | |
| def set_cfg(self, cfg): | |
| self.cfg = cfg | |
| def inner_set_conds(self, conds): | |
| for k in conds: | |
| self.original_conds[k] = comfy.sampler_helpers.convert_cond(conds[k]) | |
| def __call__(self, *args, **kwargs): | |
| return self.predict_noise(*args, **kwargs) | |
| def predict_noise(self, x, timestep, model_options={}, seed=None): | |
| return sampling_function(self.inner_model, x, timestep, self.conds.get("negative", None), self.conds.get("positive", None), self.cfg, model_options=model_options, seed=seed) | |
| def inner_sample(self, noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed): | |
| if latent_image is not None and torch.count_nonzero(latent_image) > 0: #Don't shift the empty latent image. | |
| latent_image = self.inner_model.process_latent_in(latent_image) | |
| self.conds = process_conds(self.inner_model, noise, self.conds, device, latent_image, denoise_mask, seed) | |
| extra_model_options = comfy.model_patcher.create_model_options_clone(self.model_options) | |
| extra_model_options.setdefault("transformer_options", {})["sample_sigmas"] = sigmas | |
| extra_args = {"model_options": extra_model_options, "seed": seed} | |
| executor = comfy.patcher_extension.WrapperExecutor.new_class_executor( | |
| sampler.sample, | |
| sampler, | |
| comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.SAMPLER_SAMPLE, extra_args["model_options"], is_model_options=True) | |
| ) | |
| samples = executor.execute(self, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar) | |
| return self.inner_model.process_latent_out(samples.to(torch.float32)) | |
| def outer_sample(self, noise, latent_image, sampler, sigmas, denoise_mask=None, callback=None, disable_pbar=False, seed=None): | |
| self.inner_model, self.conds, self.loaded_models = comfy.sampler_helpers.prepare_sampling(self.model_patcher, noise.shape, self.conds, self.model_options) | |
| device = self.model_patcher.load_device | |
| if denoise_mask is not None: | |
| denoise_mask = comfy.sampler_helpers.prepare_mask(denoise_mask, noise.shape, device) | |
| noise = noise.to(device) | |
| latent_image = latent_image.to(device) | |
| sigmas = sigmas.to(device) | |
| cast_to_load_options(self.model_options, device=device, dtype=self.model_patcher.model_dtype()) | |
| try: | |
| self.model_patcher.pre_run() | |
| output = self.inner_sample(noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed) | |
| finally: | |
| self.model_patcher.cleanup() | |
| comfy.sampler_helpers.cleanup_models(self.conds, self.loaded_models) | |
| del self.inner_model | |
| del self.loaded_models | |
| return output | |
| def sample(self, noise, latent_image, sampler, sigmas, denoise_mask=None, callback=None, disable_pbar=False, seed=None): | |
| if sigmas.shape[-1] == 0: | |
| return latent_image | |
| self.conds = {} | |
| for k in self.original_conds: | |
| self.conds[k] = list(map(lambda a: a.copy(), self.original_conds[k])) | |
| preprocess_conds_hooks(self.conds) | |
| try: | |
| orig_model_options = self.model_options | |
| self.model_options = comfy.model_patcher.create_model_options_clone(self.model_options) | |
| # if one hook type (or just None), then don't bother caching weights for hooks (will never change after first step) | |
| orig_hook_mode = self.model_patcher.hook_mode | |
| if get_total_hook_groups_in_conds(self.conds) <= 1: | |
| self.model_patcher.hook_mode = comfy.hooks.EnumHookMode.MinVram | |
| comfy.sampler_helpers.prepare_model_patcher(self.model_patcher, self.conds, self.model_options) | |
| filter_registered_hooks_on_conds(self.conds, self.model_options) | |
| executor = comfy.patcher_extension.WrapperExecutor.new_class_executor( | |
| self.outer_sample, | |
| self, | |
| comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.OUTER_SAMPLE, self.model_options, is_model_options=True) | |
| ) | |
| output = executor.execute(noise, latent_image, sampler, sigmas, denoise_mask, callback, disable_pbar, seed) | |
| finally: | |
| cast_to_load_options(self.model_options, device=self.model_patcher.offload_device) | |
| self.model_options = orig_model_options | |
| self.model_patcher.hook_mode = orig_hook_mode | |
| self.model_patcher.restore_hook_patches() | |
| del self.conds | |
| return output | |
| def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={}, latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None): | |
| cfg_guider = CFGGuider(model) | |
| cfg_guider.set_conds(positive, negative) | |
| cfg_guider.set_cfg(cfg) | |
| return cfg_guider.sample(noise, latent_image, sampler, sigmas, denoise_mask, callback, disable_pbar, seed) | |
| SAMPLER_NAMES = KSAMPLER_NAMES + ["ddim", "uni_pc", "uni_pc_bh2"] | |
| class SchedulerHandler(NamedTuple): | |
| handler: Callable[..., torch.Tensor] | |
| # Boolean indicates whether to call the handler like: | |
| # scheduler_function(model_sampling, steps) or | |
| # scheduler_function(n, sigma_min: float, sigma_max: float) | |
| use_ms: bool = True | |
| SCHEDULER_HANDLERS = { | |
| "normal": SchedulerHandler(normal_scheduler), | |
| "karras": SchedulerHandler(k_diffusion_sampling.get_sigmas_karras, use_ms=False), | |
| "exponential": SchedulerHandler(k_diffusion_sampling.get_sigmas_exponential, use_ms=False), | |
| "sgm_uniform": SchedulerHandler(partial(normal_scheduler, sgm=True)), | |
| "simple": SchedulerHandler(simple_scheduler), | |
| "ddim_uniform": SchedulerHandler(ddim_scheduler), | |
| "beta": SchedulerHandler(beta_scheduler), | |
| "linear_quadratic": SchedulerHandler(linear_quadratic_schedule), | |
| "kl_optimal": SchedulerHandler(kl_optimal_scheduler, use_ms=False), | |
| } | |
| SCHEDULER_NAMES = list(SCHEDULER_HANDLERS) | |
| def calculate_sigmas(model_sampling: object, scheduler_name: str, steps: int) -> torch.Tensor: | |
| handler = SCHEDULER_HANDLERS.get(scheduler_name) | |
| if handler is None: | |
| err = f"error invalid scheduler {scheduler_name}" | |
| logging.error(err) | |
| raise ValueError(err) | |
| if handler.use_ms: | |
| return handler.handler(model_sampling, steps) | |
| return handler.handler(n=steps, sigma_min=float(model_sampling.sigma_min), sigma_max=float(model_sampling.sigma_max)) | |
| def sampler_object(name): | |
| if name == "uni_pc": | |
| sampler = KSAMPLER(uni_pc.sample_unipc) | |
| elif name == "uni_pc_bh2": | |
| sampler = KSAMPLER(uni_pc.sample_unipc_bh2) | |
| elif name == "ddim": | |
| sampler = ksampler("euler", inpaint_options={"random": True}) | |
| else: | |
| sampler = ksampler(name) | |
| return sampler | |
| class KSampler: | |
| SCHEDULERS = SCHEDULER_NAMES | |
| SAMPLERS = SAMPLER_NAMES | |
| DISCARD_PENULTIMATE_SIGMA_SAMPLERS = set(('dpm_2', 'dpm_2_ancestral', 'uni_pc', 'uni_pc_bh2')) | |
| def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}): | |
| self.model = model | |
| self.device = device | |
| if scheduler not in self.SCHEDULERS: | |
| scheduler = self.SCHEDULERS[0] | |
| if sampler not in self.SAMPLERS: | |
| sampler = self.SAMPLERS[0] | |
| self.scheduler = scheduler | |
| self.sampler = sampler | |
| self.set_steps(steps, denoise) | |
| self.denoise = denoise | |
| self.model_options = model_options | |
| def calculate_sigmas(self, steps): | |
| sigmas = None | |
| discard_penultimate_sigma = False | |
| if self.sampler in self.DISCARD_PENULTIMATE_SIGMA_SAMPLERS: | |
| steps += 1 | |
| discard_penultimate_sigma = True | |
| sigmas = calculate_sigmas(self.model.get_model_object("model_sampling"), self.scheduler, steps) | |
| if discard_penultimate_sigma: | |
| sigmas = torch.cat([sigmas[:-2], sigmas[-1:]]) | |
| return sigmas | |
| def set_steps(self, steps, denoise=None): | |
| self.steps = steps | |
| if denoise is None or denoise > 0.9999: | |
| self.sigmas = self.calculate_sigmas(steps).to(self.device) | |
| else: | |
| if denoise <= 0.0: | |
| self.sigmas = torch.FloatTensor([]) | |
| else: | |
| new_steps = int(steps/denoise) | |
| sigmas = self.calculate_sigmas(new_steps).to(self.device) | |
| self.sigmas = sigmas[-(steps + 1):] | |
| def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None): | |
| if sigmas is None: | |
| sigmas = self.sigmas | |
| if last_step is not None and last_step < (len(sigmas) - 1): | |
| sigmas = sigmas[:last_step + 1] | |
| if force_full_denoise: | |
| sigmas[-1] = 0 | |
| if start_step is not None: | |
| if start_step < (len(sigmas) - 1): | |
| sigmas = sigmas[start_step:] | |
| else: | |
| if latent_image is not None: | |
| return latent_image | |
| else: | |
| return torch.zeros_like(noise) | |
| sampler = sampler_object(self.sampler) | |
| return sample(self.model, noise, positive, negative, cfg, self.device, sampler, sigmas, self.model_options, latent_image=latent_image, denoise_mask=denoise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed) | |