Spaces:
Running
on
Zero
Running
on
Zero
| """ | |
| This file is part of ComfyUI. | |
| Copyright (C) 2024 Comfy | |
| This program is free software: you can redistribute it and/or modify | |
| it under the terms of the GNU General Public License as published by | |
| the Free Software Foundation, either version 3 of the License, or | |
| (at your option) any later version. | |
| This program is distributed in the hope that it will be useful, | |
| but WITHOUT ANY WARRANTY; without even the implied warranty of | |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
| GNU General Public License for more details. | |
| You should have received a copy of the GNU General Public License | |
| along with this program. If not, see <https://www.gnu.org/licenses/>. | |
| """ | |
| import psutil | |
| import logging | |
| from enum import Enum | |
| from comfy.cli_args import args, PerformanceFeature | |
| import torch | |
| import sys | |
| import platform | |
| import weakref | |
| import gc | |
| class VRAMState(Enum): | |
| DISABLED = 0 #No vram present: no need to move models to vram | |
| NO_VRAM = 1 #Very low vram: enable all the options to save vram | |
| LOW_VRAM = 2 | |
| NORMAL_VRAM = 3 | |
| HIGH_VRAM = 4 | |
| SHARED = 5 #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both. | |
| class CPUState(Enum): | |
| GPU = 0 | |
| CPU = 1 | |
| MPS = 2 | |
| # Determine VRAM State | |
| vram_state = VRAMState.NORMAL_VRAM | |
| set_vram_to = VRAMState.NORMAL_VRAM | |
| cpu_state = CPUState.GPU | |
| total_vram = 0 | |
| xpu_available = False | |
| torch_version = "" | |
| try: | |
| torch_version = torch.version.__version__ | |
| temp = torch_version.split(".") | |
| torch_version_numeric = (int(temp[0]), int(temp[1])) | |
| xpu_available = (torch_version_numeric[0] < 2 or (torch_version_numeric[0] == 2 and torch_version_numeric[1] <= 4)) and torch.xpu.is_available() | |
| except: | |
| pass | |
| lowvram_available = True | |
| if args.deterministic: | |
| logging.info("Using deterministic algorithms for pytorch") | |
| torch.use_deterministic_algorithms(True, warn_only=True) | |
| directml_enabled = False | |
| if args.directml is not None: | |
| import torch_directml | |
| directml_enabled = True | |
| device_index = args.directml | |
| if device_index < 0: | |
| directml_device = torch_directml.device() | |
| else: | |
| directml_device = torch_directml.device(device_index) | |
| logging.info("Using directml with device: {}".format(torch_directml.device_name(device_index))) | |
| # torch_directml.disable_tiled_resources(True) | |
| lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default. | |
| try: | |
| import intel_extension_for_pytorch as ipex | |
| _ = torch.xpu.device_count() | |
| xpu_available = xpu_available or torch.xpu.is_available() | |
| except: | |
| xpu_available = xpu_available or (hasattr(torch, "xpu") and torch.xpu.is_available()) | |
| try: | |
| if torch.backends.mps.is_available(): | |
| cpu_state = CPUState.MPS | |
| import torch.mps | |
| except: | |
| pass | |
| try: | |
| import torch_npu # noqa: F401 | |
| _ = torch.npu.device_count() | |
| npu_available = torch.npu.is_available() | |
| except: | |
| npu_available = False | |
| try: | |
| import torch_mlu # noqa: F401 | |
| _ = torch.mlu.device_count() | |
| mlu_available = torch.mlu.is_available() | |
| except: | |
| mlu_available = False | |
| if args.cpu: | |
| cpu_state = CPUState.CPU | |
| def is_intel_xpu(): | |
| global cpu_state | |
| global xpu_available | |
| if cpu_state == CPUState.GPU: | |
| if xpu_available: | |
| return True | |
| return False | |
| def is_ascend_npu(): | |
| global npu_available | |
| if npu_available: | |
| return True | |
| return False | |
| def is_mlu(): | |
| global mlu_available | |
| if mlu_available: | |
| return True | |
| return False | |
| def get_torch_device(): | |
| global directml_enabled | |
| global cpu_state | |
| if directml_enabled: | |
| global directml_device | |
| return directml_device | |
| if cpu_state == CPUState.MPS: | |
| return torch.device("mps") | |
| if cpu_state == CPUState.CPU: | |
| return torch.device("cpu") | |
| else: | |
| if is_intel_xpu(): | |
| return torch.device("xpu", torch.xpu.current_device()) | |
| elif is_ascend_npu(): | |
| return torch.device("npu", torch.npu.current_device()) | |
| elif is_mlu(): | |
| return torch.device("mlu", torch.mlu.current_device()) | |
| else: | |
| return torch.device(torch.cuda.current_device()) | |
| def get_total_memory(dev=None, torch_total_too=False): | |
| global directml_enabled | |
| if dev is None: | |
| dev = get_torch_device() | |
| if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'): | |
| mem_total = psutil.virtual_memory().total | |
| mem_total_torch = mem_total | |
| else: | |
| if directml_enabled: | |
| mem_total = 1024 * 1024 * 1024 #TODO | |
| mem_total_torch = mem_total | |
| elif is_intel_xpu(): | |
| stats = torch.xpu.memory_stats(dev) | |
| mem_reserved = stats['reserved_bytes.all.current'] | |
| mem_total_torch = mem_reserved | |
| mem_total = torch.xpu.get_device_properties(dev).total_memory | |
| elif is_ascend_npu(): | |
| stats = torch.npu.memory_stats(dev) | |
| mem_reserved = stats['reserved_bytes.all.current'] | |
| _, mem_total_npu = torch.npu.mem_get_info(dev) | |
| mem_total_torch = mem_reserved | |
| mem_total = mem_total_npu | |
| elif is_mlu(): | |
| stats = torch.mlu.memory_stats(dev) | |
| mem_reserved = stats['reserved_bytes.all.current'] | |
| _, mem_total_mlu = torch.mlu.mem_get_info(dev) | |
| mem_total_torch = mem_reserved | |
| mem_total = mem_total_mlu | |
| else: | |
| stats = torch.cuda.memory_stats(dev) | |
| mem_reserved = stats['reserved_bytes.all.current'] | |
| _, mem_total_cuda = torch.cuda.mem_get_info(dev) | |
| mem_total_torch = mem_reserved | |
| mem_total = mem_total_cuda | |
| if torch_total_too: | |
| return (mem_total, mem_total_torch) | |
| else: | |
| return mem_total | |
| def mac_version(): | |
| try: | |
| return tuple(int(n) for n in platform.mac_ver()[0].split(".")) | |
| except: | |
| return None | |
| total_vram = get_total_memory(get_torch_device()) / (1024 * 1024) | |
| total_ram = psutil.virtual_memory().total / (1024 * 1024) | |
| logging.info("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram)) | |
| try: | |
| logging.info("pytorch version: {}".format(torch_version)) | |
| mac_ver = mac_version() | |
| if mac_ver is not None: | |
| logging.info("Mac Version {}".format(mac_ver)) | |
| except: | |
| pass | |
| try: | |
| OOM_EXCEPTION = torch.cuda.OutOfMemoryError | |
| except: | |
| OOM_EXCEPTION = Exception | |
| XFORMERS_VERSION = "" | |
| XFORMERS_ENABLED_VAE = True | |
| if args.disable_xformers: | |
| XFORMERS_IS_AVAILABLE = False | |
| else: | |
| try: | |
| import xformers | |
| import xformers.ops | |
| XFORMERS_IS_AVAILABLE = True | |
| try: | |
| XFORMERS_IS_AVAILABLE = xformers._has_cpp_library | |
| except: | |
| pass | |
| try: | |
| XFORMERS_VERSION = xformers.version.__version__ | |
| logging.info("xformers version: {}".format(XFORMERS_VERSION)) | |
| if XFORMERS_VERSION.startswith("0.0.18"): | |
| logging.warning("\nWARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.") | |
| logging.warning("Please downgrade or upgrade xformers to a different version.\n") | |
| XFORMERS_ENABLED_VAE = False | |
| except: | |
| pass | |
| except: | |
| XFORMERS_IS_AVAILABLE = False | |
| def is_nvidia(): | |
| global cpu_state | |
| if cpu_state == CPUState.GPU: | |
| if torch.version.cuda: | |
| return True | |
| return False | |
| def is_amd(): | |
| global cpu_state | |
| if cpu_state == CPUState.GPU: | |
| if torch.version.hip: | |
| return True | |
| return False | |
| MIN_WEIGHT_MEMORY_RATIO = 0.4 | |
| if is_nvidia(): | |
| MIN_WEIGHT_MEMORY_RATIO = 0.0 | |
| ENABLE_PYTORCH_ATTENTION = False | |
| if args.use_pytorch_cross_attention: | |
| ENABLE_PYTORCH_ATTENTION = True | |
| XFORMERS_IS_AVAILABLE = False | |
| try: | |
| if is_nvidia(): | |
| if torch_version_numeric[0] >= 2: | |
| if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False: | |
| ENABLE_PYTORCH_ATTENTION = True | |
| if is_intel_xpu() or is_ascend_npu() or is_mlu(): | |
| if args.use_split_cross_attention == False and args.use_quad_cross_attention == False: | |
| ENABLE_PYTORCH_ATTENTION = True | |
| except: | |
| pass | |
| try: | |
| if is_amd(): | |
| arch = torch.cuda.get_device_properties(get_torch_device()).gcnArchName | |
| logging.info("AMD arch: {}".format(arch)) | |
| if args.use_split_cross_attention == False and args.use_quad_cross_attention == False: | |
| if torch_version_numeric[0] >= 2 and torch_version_numeric[1] >= 7: # works on 2.6 but doesn't actually seem to improve much | |
| if any((a in arch) for a in ["gfx1100", "gfx1101"]): # TODO: more arches | |
| ENABLE_PYTORCH_ATTENTION = True | |
| except: | |
| pass | |
| if ENABLE_PYTORCH_ATTENTION: | |
| torch.backends.cuda.enable_math_sdp(True) | |
| torch.backends.cuda.enable_flash_sdp(True) | |
| torch.backends.cuda.enable_mem_efficient_sdp(True) | |
| PRIORITIZE_FP16 = False # TODO: remove and replace with something that shows exactly which dtype is faster than the other | |
| try: | |
| if is_nvidia() and PerformanceFeature.Fp16Accumulation in args.fast: | |
| torch.backends.cuda.matmul.allow_fp16_accumulation = True | |
| PRIORITIZE_FP16 = True # TODO: limit to cards where it actually boosts performance | |
| logging.info("Enabled fp16 accumulation.") | |
| except: | |
| pass | |
| try: | |
| if torch_version_numeric[0] == 2 and torch_version_numeric[1] >= 5: | |
| torch.backends.cuda.allow_fp16_bf16_reduction_math_sdp(True) | |
| except: | |
| logging.warning("Warning, could not set allow_fp16_bf16_reduction_math_sdp") | |
| if args.lowvram: | |
| set_vram_to = VRAMState.LOW_VRAM | |
| lowvram_available = True | |
| elif args.novram: | |
| set_vram_to = VRAMState.NO_VRAM | |
| elif args.highvram or args.gpu_only: | |
| vram_state = VRAMState.HIGH_VRAM | |
| FORCE_FP32 = False | |
| if args.force_fp32: | |
| logging.info("Forcing FP32, if this improves things please report it.") | |
| FORCE_FP32 = True | |
| if lowvram_available: | |
| if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM): | |
| vram_state = set_vram_to | |
| if cpu_state != CPUState.GPU: | |
| vram_state = VRAMState.DISABLED | |
| if cpu_state == CPUState.MPS: | |
| vram_state = VRAMState.SHARED | |
| logging.info(f"Set vram state to: {vram_state.name}") | |
| DISABLE_SMART_MEMORY = args.disable_smart_memory | |
| if DISABLE_SMART_MEMORY: | |
| logging.info("Disabling smart memory management") | |
| def get_torch_device_name(device): | |
| if hasattr(device, 'type'): | |
| if device.type == "cuda": | |
| try: | |
| allocator_backend = torch.cuda.get_allocator_backend() | |
| except: | |
| allocator_backend = "" | |
| return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend) | |
| else: | |
| return "{}".format(device.type) | |
| elif is_intel_xpu(): | |
| return "{} {}".format(device, torch.xpu.get_device_name(device)) | |
| elif is_ascend_npu(): | |
| return "{} {}".format(device, torch.npu.get_device_name(device)) | |
| elif is_mlu(): | |
| return "{} {}".format(device, torch.mlu.get_device_name(device)) | |
| else: | |
| return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device)) | |
| try: | |
| logging.info("Device: {}".format(get_torch_device_name(get_torch_device()))) | |
| except: | |
| logging.warning("Could not pick default device.") | |
| current_loaded_models = [] | |
| def module_size(module): | |
| module_mem = 0 | |
| sd = module.state_dict() | |
| for k in sd: | |
| t = sd[k] | |
| module_mem += t.nelement() * t.element_size() | |
| return module_mem | |
| class LoadedModel: | |
| def __init__(self, model): | |
| self._set_model(model) | |
| self.device = model.load_device | |
| self.real_model = None | |
| self.currently_used = True | |
| self.model_finalizer = None | |
| self._patcher_finalizer = None | |
| def _set_model(self, model): | |
| self._model = weakref.ref(model) | |
| if model.parent is not None: | |
| self._parent_model = weakref.ref(model.parent) | |
| self._patcher_finalizer = weakref.finalize(model, self._switch_parent) | |
| def _switch_parent(self): | |
| model = self._parent_model() | |
| if model is not None: | |
| self._set_model(model) | |
| def model(self): | |
| return self._model() | |
| def model_memory(self): | |
| return self.model.model_size() | |
| def model_loaded_memory(self): | |
| return self.model.loaded_size() | |
| def model_offloaded_memory(self): | |
| return self.model.model_size() - self.model.loaded_size() | |
| def model_memory_required(self, device): | |
| if device == self.model.current_loaded_device(): | |
| return self.model_offloaded_memory() | |
| else: | |
| return self.model_memory() | |
| def model_load(self, lowvram_model_memory=0, force_patch_weights=False): | |
| self.model.model_patches_to(self.device) | |
| self.model.model_patches_to(self.model.model_dtype()) | |
| # if self.model.loaded_size() > 0: | |
| use_more_vram = lowvram_model_memory | |
| if use_more_vram == 0: | |
| use_more_vram = 1e32 | |
| self.model_use_more_vram(use_more_vram, force_patch_weights=force_patch_weights) | |
| real_model = self.model.model | |
| if is_intel_xpu() and not args.disable_ipex_optimize and 'ipex' in globals() and real_model is not None: | |
| with torch.no_grad(): | |
| real_model = ipex.optimize(real_model.eval(), inplace=True, graph_mode=True, concat_linear=True) | |
| self.real_model = weakref.ref(real_model) | |
| self.model_finalizer = weakref.finalize(real_model, cleanup_models) | |
| return real_model | |
| def should_reload_model(self, force_patch_weights=False): | |
| if force_patch_weights and self.model.lowvram_patch_counter() > 0: | |
| return True | |
| return False | |
| def model_unload(self, memory_to_free=None, unpatch_weights=True): | |
| if memory_to_free is not None: | |
| if memory_to_free < self.model.loaded_size(): | |
| freed = self.model.partially_unload(self.model.offload_device, memory_to_free) | |
| if freed >= memory_to_free: | |
| return False | |
| self.model.detach(unpatch_weights) | |
| self.model_finalizer.detach() | |
| self.model_finalizer = None | |
| self.real_model = None | |
| return True | |
| def model_use_more_vram(self, extra_memory, force_patch_weights=False): | |
| return self.model.partially_load(self.device, extra_memory, force_patch_weights=force_patch_weights) | |
| def __eq__(self, other): | |
| return self.model is other.model | |
| def __del__(self): | |
| if self._patcher_finalizer is not None: | |
| self._patcher_finalizer.detach() | |
| def is_dead(self): | |
| return self.real_model() is not None and self.model is None | |
| def use_more_memory(extra_memory, loaded_models, device): | |
| for m in loaded_models: | |
| if m.device == device: | |
| extra_memory -= m.model_use_more_vram(extra_memory) | |
| if extra_memory <= 0: | |
| break | |
| def offloaded_memory(loaded_models, device): | |
| offloaded_mem = 0 | |
| for m in loaded_models: | |
| if m.device == device: | |
| offloaded_mem += m.model_offloaded_memory() | |
| return offloaded_mem | |
| WINDOWS = any(platform.win32_ver()) | |
| EXTRA_RESERVED_VRAM = 400 * 1024 * 1024 | |
| if WINDOWS: | |
| EXTRA_RESERVED_VRAM = 600 * 1024 * 1024 #Windows is higher because of the shared vram issue | |
| if args.reserve_vram is not None: | |
| EXTRA_RESERVED_VRAM = args.reserve_vram * 1024 * 1024 * 1024 | |
| logging.debug("Reserving {}MB vram for other applications.".format(EXTRA_RESERVED_VRAM / (1024 * 1024))) | |
| def extra_reserved_memory(): | |
| return EXTRA_RESERVED_VRAM | |
| def minimum_inference_memory(): | |
| return (1024 * 1024 * 1024) * 0.8 + extra_reserved_memory() | |
| def free_memory(memory_required, device, keep_loaded=[]): | |
| cleanup_models_gc() | |
| unloaded_model = [] | |
| can_unload = [] | |
| unloaded_models = [] | |
| for i in range(len(current_loaded_models) -1, -1, -1): | |
| shift_model = current_loaded_models[i] | |
| if shift_model.device == device: | |
| if shift_model not in keep_loaded and not shift_model.is_dead(): | |
| can_unload.append((-shift_model.model_offloaded_memory(), sys.getrefcount(shift_model.model), shift_model.model_memory(), i)) | |
| shift_model.currently_used = False | |
| for x in sorted(can_unload): | |
| i = x[-1] | |
| memory_to_free = None | |
| if not DISABLE_SMART_MEMORY: | |
| free_mem = get_free_memory(device) | |
| if free_mem > memory_required: | |
| break | |
| memory_to_free = memory_required - free_mem | |
| logging.debug(f"Unloading {current_loaded_models[i].model.model.__class__.__name__}") | |
| if current_loaded_models[i].model_unload(memory_to_free): | |
| unloaded_model.append(i) | |
| for i in sorted(unloaded_model, reverse=True): | |
| unloaded_models.append(current_loaded_models.pop(i)) | |
| if len(unloaded_model) > 0: | |
| soft_empty_cache() | |
| else: | |
| if vram_state != VRAMState.HIGH_VRAM: | |
| mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True) | |
| if mem_free_torch > mem_free_total * 0.25: | |
| soft_empty_cache() | |
| return unloaded_models | |
| def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimum_memory_required=None, force_full_load=False): | |
| cleanup_models_gc() | |
| global vram_state | |
| inference_memory = minimum_inference_memory() | |
| extra_mem = max(inference_memory, memory_required + extra_reserved_memory()) | |
| if minimum_memory_required is None: | |
| minimum_memory_required = extra_mem | |
| else: | |
| minimum_memory_required = max(inference_memory, minimum_memory_required + extra_reserved_memory()) | |
| models = set(models) | |
| models_to_load = [] | |
| for x in models: | |
| loaded_model = LoadedModel(x) | |
| try: | |
| loaded_model_index = current_loaded_models.index(loaded_model) | |
| except: | |
| loaded_model_index = None | |
| if loaded_model_index is not None: | |
| loaded = current_loaded_models[loaded_model_index] | |
| loaded.currently_used = True | |
| models_to_load.append(loaded) | |
| else: | |
| if hasattr(x, "model"): | |
| logging.info(f"Requested to load {x.model.__class__.__name__}") | |
| models_to_load.append(loaded_model) | |
| for loaded_model in models_to_load: | |
| to_unload = [] | |
| for i in range(len(current_loaded_models)): | |
| if loaded_model.model.is_clone(current_loaded_models[i].model): | |
| to_unload = [i] + to_unload | |
| for i in to_unload: | |
| current_loaded_models.pop(i).model.detach(unpatch_all=False) | |
| total_memory_required = {} | |
| for loaded_model in models_to_load: | |
| total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device) | |
| for device in total_memory_required: | |
| if device != torch.device("cpu"): | |
| free_memory(total_memory_required[device] * 1.1 + extra_mem, device) | |
| for device in total_memory_required: | |
| if device != torch.device("cpu"): | |
| free_mem = get_free_memory(device) | |
| if free_mem < minimum_memory_required: | |
| models_l = free_memory(minimum_memory_required, device) | |
| logging.info("{} models unloaded.".format(len(models_l))) | |
| for loaded_model in models_to_load: | |
| model = loaded_model.model | |
| torch_dev = model.load_device | |
| if is_device_cpu(torch_dev): | |
| vram_set_state = VRAMState.DISABLED | |
| else: | |
| vram_set_state = vram_state | |
| lowvram_model_memory = 0 | |
| if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM) and not force_full_load: | |
| loaded_memory = loaded_model.model_loaded_memory() | |
| current_free_mem = get_free_memory(torch_dev) + loaded_memory | |
| lowvram_model_memory = max(128 * 1024 * 1024, (current_free_mem - minimum_memory_required), min(current_free_mem * MIN_WEIGHT_MEMORY_RATIO, current_free_mem - minimum_inference_memory())) | |
| lowvram_model_memory = max(0.1, lowvram_model_memory - loaded_memory) | |
| if vram_set_state == VRAMState.NO_VRAM: | |
| lowvram_model_memory = 0.1 | |
| loaded_model.model_load(lowvram_model_memory, force_patch_weights=force_patch_weights) | |
| current_loaded_models.insert(0, loaded_model) | |
| return | |
| def load_model_gpu(model): | |
| return load_models_gpu([model]) | |
| def loaded_models(only_currently_used=False): | |
| output = [] | |
| for m in current_loaded_models: | |
| if only_currently_used: | |
| if not m.currently_used: | |
| continue | |
| output.append(m.model) | |
| return output | |
| def cleanup_models_gc(): | |
| do_gc = False | |
| for i in range(len(current_loaded_models)): | |
| cur = current_loaded_models[i] | |
| if cur.is_dead(): | |
| logging.info("Potential memory leak detected with model {}, doing a full garbage collect, for maximum performance avoid circular references in the model code.".format(cur.real_model().__class__.__name__)) | |
| do_gc = True | |
| break | |
| if do_gc: | |
| gc.collect() | |
| soft_empty_cache() | |
| for i in range(len(current_loaded_models)): | |
| cur = current_loaded_models[i] | |
| if cur.is_dead(): | |
| logging.warning("WARNING, memory leak with model {}. Please make sure it is not being referenced from somewhere.".format(cur.real_model().__class__.__name__)) | |
| def cleanup_models(): | |
| to_delete = [] | |
| for i in range(len(current_loaded_models)): | |
| if current_loaded_models[i].real_model() is None: | |
| to_delete = [i] + to_delete | |
| for i in to_delete: | |
| x = current_loaded_models.pop(i) | |
| del x | |
| def dtype_size(dtype): | |
| dtype_size = 4 | |
| if dtype == torch.float16 or dtype == torch.bfloat16: | |
| dtype_size = 2 | |
| elif dtype == torch.float32: | |
| dtype_size = 4 | |
| else: | |
| try: | |
| dtype_size = dtype.itemsize | |
| except: #Old pytorch doesn't have .itemsize | |
| pass | |
| return dtype_size | |
| def unet_offload_device(): | |
| if vram_state == VRAMState.HIGH_VRAM: | |
| return get_torch_device() | |
| else: | |
| return torch.device("cpu") | |
| def unet_inital_load_device(parameters, dtype): | |
| torch_dev = get_torch_device() | |
| if vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.SHARED: | |
| return torch_dev | |
| cpu_dev = torch.device("cpu") | |
| if DISABLE_SMART_MEMORY: | |
| return cpu_dev | |
| model_size = dtype_size(dtype) * parameters | |
| mem_dev = get_free_memory(torch_dev) | |
| mem_cpu = get_free_memory(cpu_dev) | |
| if mem_dev > mem_cpu and model_size < mem_dev: | |
| return torch_dev | |
| else: | |
| return cpu_dev | |
| def maximum_vram_for_weights(device=None): | |
| return (get_total_memory(device) * 0.88 - minimum_inference_memory()) | |
| def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32], weight_dtype=None): | |
| if model_params < 0: | |
| model_params = 1000000000000000000000 | |
| if args.fp32_unet: | |
| return torch.float32 | |
| if args.fp64_unet: | |
| return torch.float64 | |
| if args.bf16_unet: | |
| return torch.bfloat16 | |
| if args.fp16_unet: | |
| return torch.float16 | |
| if args.fp8_e4m3fn_unet: | |
| return torch.float8_e4m3fn | |
| if args.fp8_e5m2_unet: | |
| return torch.float8_e5m2 | |
| fp8_dtype = None | |
| try: | |
| if weight_dtype in [torch.float8_e4m3fn, torch.float8_e5m2]: | |
| fp8_dtype = weight_dtype | |
| except: | |
| pass | |
| if fp8_dtype is not None: | |
| if supports_fp8_compute(device): #if fp8 compute is supported the casting is most likely not expensive | |
| return fp8_dtype | |
| free_model_memory = maximum_vram_for_weights(device) | |
| if model_params * 2 > free_model_memory: | |
| return fp8_dtype | |
| if PRIORITIZE_FP16 or weight_dtype == torch.float16: | |
| if torch.float16 in supported_dtypes and should_use_fp16(device=device, model_params=model_params): | |
| return torch.float16 | |
| for dt in supported_dtypes: | |
| if dt == torch.float16 and should_use_fp16(device=device, model_params=model_params): | |
| if torch.float16 in supported_dtypes: | |
| return torch.float16 | |
| if dt == torch.bfloat16 and should_use_bf16(device, model_params=model_params): | |
| if torch.bfloat16 in supported_dtypes: | |
| return torch.bfloat16 | |
| for dt in supported_dtypes: | |
| if dt == torch.float16 and should_use_fp16(device=device, model_params=model_params, manual_cast=True): | |
| if torch.float16 in supported_dtypes: | |
| return torch.float16 | |
| if dt == torch.bfloat16 and should_use_bf16(device, model_params=model_params, manual_cast=True): | |
| if torch.bfloat16 in supported_dtypes: | |
| return torch.bfloat16 | |
| return torch.float32 | |
| # None means no manual cast | |
| def unet_manual_cast(weight_dtype, inference_device, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]): | |
| if weight_dtype == torch.float32 or weight_dtype == torch.float64: | |
| return None | |
| fp16_supported = should_use_fp16(inference_device, prioritize_performance=False) | |
| if fp16_supported and weight_dtype == torch.float16: | |
| return None | |
| bf16_supported = should_use_bf16(inference_device) | |
| if bf16_supported and weight_dtype == torch.bfloat16: | |
| return None | |
| fp16_supported = should_use_fp16(inference_device, prioritize_performance=True) | |
| if PRIORITIZE_FP16 and fp16_supported and torch.float16 in supported_dtypes: | |
| return torch.float16 | |
| for dt in supported_dtypes: | |
| if dt == torch.float16 and fp16_supported: | |
| return torch.float16 | |
| if dt == torch.bfloat16 and bf16_supported: | |
| return torch.bfloat16 | |
| return torch.float32 | |
| def text_encoder_offload_device(): | |
| if args.gpu_only: | |
| return get_torch_device() | |
| else: | |
| return torch.device("cpu") | |
| def text_encoder_device(): | |
| if args.gpu_only: | |
| return get_torch_device() | |
| elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM: | |
| if should_use_fp16(prioritize_performance=False): | |
| return get_torch_device() | |
| else: | |
| return torch.device("cpu") | |
| else: | |
| return torch.device("cpu") | |
| def text_encoder_initial_device(load_device, offload_device, model_size=0): | |
| if load_device == offload_device or model_size <= 1024 * 1024 * 1024: | |
| return offload_device | |
| if is_device_mps(load_device): | |
| return load_device | |
| mem_l = get_free_memory(load_device) | |
| mem_o = get_free_memory(offload_device) | |
| if mem_l > (mem_o * 0.5) and model_size * 1.2 < mem_l: | |
| return load_device | |
| else: | |
| return offload_device | |
| def text_encoder_dtype(device=None): | |
| if args.fp8_e4m3fn_text_enc: | |
| return torch.float8_e4m3fn | |
| elif args.fp8_e5m2_text_enc: | |
| return torch.float8_e5m2 | |
| elif args.fp16_text_enc: | |
| return torch.float16 | |
| elif args.fp32_text_enc: | |
| return torch.float32 | |
| if is_device_cpu(device): | |
| return torch.float16 | |
| return torch.float16 | |
| def intermediate_device(): | |
| if args.gpu_only: | |
| return get_torch_device() | |
| else: | |
| return torch.device("cpu") | |
| def vae_device(): | |
| if args.cpu_vae: | |
| return torch.device("cpu") | |
| return get_torch_device() | |
| def vae_offload_device(): | |
| if args.gpu_only: | |
| return get_torch_device() | |
| else: | |
| return torch.device("cpu") | |
| def vae_dtype(device=None, allowed_dtypes=[]): | |
| if args.fp16_vae: | |
| return torch.float16 | |
| elif args.bf16_vae: | |
| return torch.bfloat16 | |
| elif args.fp32_vae: | |
| return torch.float32 | |
| for d in allowed_dtypes: | |
| if d == torch.float16 and should_use_fp16(device): | |
| return d | |
| # NOTE: bfloat16 seems to work on AMD for the VAE but is extremely slow in some cases compared to fp32 | |
| if d == torch.bfloat16 and (not is_amd()) and should_use_bf16(device): | |
| return d | |
| return torch.float32 | |
| def get_autocast_device(dev): | |
| if hasattr(dev, 'type'): | |
| return dev.type | |
| return "cuda" | |
| def supports_dtype(device, dtype): #TODO | |
| if dtype == torch.float32: | |
| return True | |
| if is_device_cpu(device): | |
| return False | |
| if dtype == torch.float16: | |
| return True | |
| if dtype == torch.bfloat16: | |
| return True | |
| return False | |
| def supports_cast(device, dtype): #TODO | |
| if dtype == torch.float32: | |
| return True | |
| if dtype == torch.float16: | |
| return True | |
| if directml_enabled: #TODO: test this | |
| return False | |
| if dtype == torch.bfloat16: | |
| return True | |
| if is_device_mps(device): | |
| return False | |
| if dtype == torch.float8_e4m3fn: | |
| return True | |
| if dtype == torch.float8_e5m2: | |
| return True | |
| return False | |
| def pick_weight_dtype(dtype, fallback_dtype, device=None): | |
| if dtype is None: | |
| dtype = fallback_dtype | |
| elif dtype_size(dtype) > dtype_size(fallback_dtype): | |
| dtype = fallback_dtype | |
| if not supports_cast(device, dtype): | |
| dtype = fallback_dtype | |
| return dtype | |
| def device_supports_non_blocking(device): | |
| if is_device_mps(device): | |
| return False #pytorch bug? mps doesn't support non blocking | |
| if is_intel_xpu(): | |
| return False | |
| if args.deterministic: #TODO: figure out why deterministic breaks non blocking from gpu to cpu (previews) | |
| return False | |
| if directml_enabled: | |
| return False | |
| return True | |
| def device_should_use_non_blocking(device): | |
| if not device_supports_non_blocking(device): | |
| return False | |
| return False | |
| # return True #TODO: figure out why this causes memory issues on Nvidia and possibly others | |
| def force_channels_last(): | |
| if args.force_channels_last: | |
| return True | |
| #TODO | |
| return False | |
| def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False): | |
| if device is None or weight.device == device: | |
| if not copy: | |
| if dtype is None or weight.dtype == dtype: | |
| return weight | |
| return weight.to(dtype=dtype, copy=copy) | |
| r = torch.empty_like(weight, dtype=dtype, device=device) | |
| r.copy_(weight, non_blocking=non_blocking) | |
| return r | |
| def cast_to_device(tensor, device, dtype, copy=False): | |
| non_blocking = device_supports_non_blocking(device) | |
| return cast_to(tensor, dtype=dtype, device=device, non_blocking=non_blocking, copy=copy) | |
| def sage_attention_enabled(): | |
| return args.use_sage_attention | |
| def flash_attention_enabled(): | |
| return args.use_flash_attention | |
| def xformers_enabled(): | |
| global directml_enabled | |
| global cpu_state | |
| if cpu_state != CPUState.GPU: | |
| return False | |
| if is_intel_xpu(): | |
| return False | |
| if is_ascend_npu(): | |
| return False | |
| if is_mlu(): | |
| return False | |
| if directml_enabled: | |
| return False | |
| return XFORMERS_IS_AVAILABLE | |
| def xformers_enabled_vae(): | |
| enabled = xformers_enabled() | |
| if not enabled: | |
| return False | |
| return XFORMERS_ENABLED_VAE | |
| def pytorch_attention_enabled(): | |
| global ENABLE_PYTORCH_ATTENTION | |
| return ENABLE_PYTORCH_ATTENTION | |
| def pytorch_attention_enabled_vae(): | |
| if is_amd(): | |
| return False # enabling pytorch attention on AMD currently causes crash when doing high res | |
| return pytorch_attention_enabled() | |
| def pytorch_attention_flash_attention(): | |
| global ENABLE_PYTORCH_ATTENTION | |
| if ENABLE_PYTORCH_ATTENTION: | |
| #TODO: more reliable way of checking for flash attention? | |
| if is_nvidia(): #pytorch flash attention only works on Nvidia | |
| return True | |
| if is_intel_xpu(): | |
| return True | |
| if is_ascend_npu(): | |
| return True | |
| if is_mlu(): | |
| return True | |
| if is_amd(): | |
| return True #if you have pytorch attention enabled on AMD it probably supports at least mem efficient attention | |
| return False | |
| def force_upcast_attention_dtype(): | |
| upcast = args.force_upcast_attention | |
| macos_version = mac_version() | |
| if macos_version is not None and ((14, 5) <= macos_version < (16,)): # black image bug on recent versions of macOS | |
| upcast = True | |
| if upcast: | |
| return {torch.float16: torch.float32} | |
| else: | |
| return None | |
| def get_free_memory(dev=None, torch_free_too=False): | |
| global directml_enabled | |
| if dev is None: | |
| dev = get_torch_device() | |
| if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'): | |
| mem_free_total = psutil.virtual_memory().available | |
| mem_free_torch = mem_free_total | |
| else: | |
| if directml_enabled: | |
| mem_free_total = 1024 * 1024 * 1024 #TODO | |
| mem_free_torch = mem_free_total | |
| elif is_intel_xpu(): | |
| stats = torch.xpu.memory_stats(dev) | |
| mem_active = stats['active_bytes.all.current'] | |
| mem_reserved = stats['reserved_bytes.all.current'] | |
| mem_free_torch = mem_reserved - mem_active | |
| mem_free_xpu = torch.xpu.get_device_properties(dev).total_memory - mem_reserved | |
| mem_free_total = mem_free_xpu + mem_free_torch | |
| elif is_ascend_npu(): | |
| stats = torch.npu.memory_stats(dev) | |
| mem_active = stats['active_bytes.all.current'] | |
| mem_reserved = stats['reserved_bytes.all.current'] | |
| mem_free_npu, _ = torch.npu.mem_get_info(dev) | |
| mem_free_torch = mem_reserved - mem_active | |
| mem_free_total = mem_free_npu + mem_free_torch | |
| elif is_mlu(): | |
| stats = torch.mlu.memory_stats(dev) | |
| mem_active = stats['active_bytes.all.current'] | |
| mem_reserved = stats['reserved_bytes.all.current'] | |
| mem_free_mlu, _ = torch.mlu.mem_get_info(dev) | |
| mem_free_torch = mem_reserved - mem_active | |
| mem_free_total = mem_free_mlu + mem_free_torch | |
| else: | |
| stats = torch.cuda.memory_stats(dev) | |
| mem_active = stats['active_bytes.all.current'] | |
| mem_reserved = stats['reserved_bytes.all.current'] | |
| mem_free_cuda, _ = torch.cuda.mem_get_info(dev) | |
| mem_free_torch = mem_reserved - mem_active | |
| mem_free_total = mem_free_cuda + mem_free_torch | |
| if torch_free_too: | |
| return (mem_free_total, mem_free_torch) | |
| else: | |
| return mem_free_total | |
| def cpu_mode(): | |
| global cpu_state | |
| return cpu_state == CPUState.CPU | |
| def mps_mode(): | |
| global cpu_state | |
| return cpu_state == CPUState.MPS | |
| def is_device_type(device, type): | |
| if hasattr(device, 'type'): | |
| if (device.type == type): | |
| return True | |
| return False | |
| def is_device_cpu(device): | |
| return is_device_type(device, 'cpu') | |
| def is_device_mps(device): | |
| return is_device_type(device, 'mps') | |
| def is_device_cuda(device): | |
| return is_device_type(device, 'cuda') | |
| def is_directml_enabled(): | |
| global directml_enabled | |
| if directml_enabled: | |
| return True | |
| return False | |
| def should_use_fp16(device=None, model_params=0, prioritize_performance=True, manual_cast=False): | |
| if device is not None: | |
| if is_device_cpu(device): | |
| return False | |
| if args.force_fp16: | |
| return True | |
| if FORCE_FP32: | |
| return False | |
| if is_directml_enabled(): | |
| return True | |
| if (device is not None and is_device_mps(device)) or mps_mode(): | |
| return True | |
| if cpu_mode(): | |
| return False | |
| if is_intel_xpu(): | |
| return True | |
| if is_ascend_npu(): | |
| return True | |
| if is_mlu(): | |
| return True | |
| if torch.version.hip: | |
| return True | |
| props = torch.cuda.get_device_properties(device) | |
| if props.major >= 8: | |
| return True | |
| if props.major < 6: | |
| return False | |
| #FP16 is confirmed working on a 1080 (GP104) and on latest pytorch actually seems faster than fp32 | |
| nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050", "p40", "p100", "p6", "p4"] | |
| for x in nvidia_10_series: | |
| if x in props.name.lower(): | |
| if WINDOWS or manual_cast: | |
| return True | |
| else: | |
| return False #weird linux behavior where fp32 is faster | |
| if manual_cast: | |
| free_model_memory = maximum_vram_for_weights(device) | |
| if (not prioritize_performance) or model_params * 4 > free_model_memory: | |
| return True | |
| if props.major < 7: | |
| return False | |
| #FP16 is just broken on these cards | |
| nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX", "T2000", "T1000", "T1200"] | |
| for x in nvidia_16_series: | |
| if x in props.name: | |
| return False | |
| return True | |
| def should_use_bf16(device=None, model_params=0, prioritize_performance=True, manual_cast=False): | |
| if device is not None: | |
| if is_device_cpu(device): #TODO ? bf16 works on CPU but is extremely slow | |
| return False | |
| if FORCE_FP32: | |
| return False | |
| if directml_enabled: | |
| return False | |
| if (device is not None and is_device_mps(device)) or mps_mode(): | |
| if mac_version() < (14,): | |
| return False | |
| return True | |
| if cpu_mode(): | |
| return False | |
| if is_intel_xpu(): | |
| return True | |
| if is_ascend_npu(): | |
| return True | |
| if is_amd(): | |
| arch = torch.cuda.get_device_properties(device).gcnArchName | |
| if any((a in arch) for a in ["gfx1030", "gfx1031", "gfx1010", "gfx1011", "gfx1012", "gfx906", "gfx900", "gfx803"]): # RDNA2 and older don't support bf16 | |
| if manual_cast: | |
| return True | |
| return False | |
| props = torch.cuda.get_device_properties(device) | |
| if is_mlu(): | |
| if props.major > 3: | |
| return True | |
| if props.major >= 8: | |
| return True | |
| bf16_works = torch.cuda.is_bf16_supported() | |
| if bf16_works and manual_cast: | |
| free_model_memory = maximum_vram_for_weights(device) | |
| if (not prioritize_performance) or model_params * 4 > free_model_memory: | |
| return True | |
| return False | |
| def supports_fp8_compute(device=None): | |
| if not is_nvidia(): | |
| return False | |
| props = torch.cuda.get_device_properties(device) | |
| if props.major >= 9: | |
| return True | |
| if props.major < 8: | |
| return False | |
| if props.minor < 9: | |
| return False | |
| if torch_version_numeric[0] < 2 or (torch_version_numeric[0] == 2 and torch_version_numeric[1] < 3): | |
| return False | |
| if WINDOWS: | |
| if (torch_version_numeric[0] == 2 and torch_version_numeric[1] < 4): | |
| return False | |
| return True | |
| def soft_empty_cache(force=False): | |
| global cpu_state | |
| if cpu_state == CPUState.MPS: | |
| torch.mps.empty_cache() | |
| elif is_intel_xpu(): | |
| torch.xpu.empty_cache() | |
| elif is_ascend_npu(): | |
| torch.npu.empty_cache() | |
| elif torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| torch.cuda.ipc_collect() | |
| def unload_all_models(): | |
| free_memory(1e30, get_torch_device()) | |
| #TODO: might be cleaner to put this somewhere else | |
| import threading | |
| class InterruptProcessingException(Exception): | |
| pass | |
| interrupt_processing_mutex = threading.RLock() | |
| interrupt_processing = False | |
| def interrupt_current_processing(value=True): | |
| global interrupt_processing | |
| global interrupt_processing_mutex | |
| with interrupt_processing_mutex: | |
| interrupt_processing = value | |
| def processing_interrupted(): | |
| global interrupt_processing | |
| global interrupt_processing_mutex | |
| with interrupt_processing_mutex: | |
| return interrupt_processing | |
| def throw_exception_if_processing_interrupted(): | |
| global interrupt_processing | |
| global interrupt_processing_mutex | |
| with interrupt_processing_mutex: | |
| if interrupt_processing: | |
| interrupt_processing = False | |
| raise InterruptProcessingException() | |