Spaces:
Running
on
Zero
Running
on
Zero
| import logging | |
| import math | |
| import torch | |
| from contextlib import contextmanager | |
| from typing import Any, Dict, Tuple, Union | |
| from comfy.ldm.modules.distributions.distributions import DiagonalGaussianDistribution | |
| from comfy.ldm.util import get_obj_from_str, instantiate_from_config | |
| from comfy.ldm.modules.ema import LitEma | |
| import comfy.ops | |
| class DiagonalGaussianRegularizer(torch.nn.Module): | |
| def __init__(self, sample: bool = True): | |
| super().__init__() | |
| self.sample = sample | |
| def get_trainable_parameters(self) -> Any: | |
| yield from () | |
| def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]: | |
| log = dict() | |
| posterior = DiagonalGaussianDistribution(z) | |
| if self.sample: | |
| z = posterior.sample() | |
| else: | |
| z = posterior.mode() | |
| kl_loss = posterior.kl() | |
| kl_loss = torch.sum(kl_loss) / kl_loss.shape[0] | |
| log["kl_loss"] = kl_loss | |
| return z, log | |
| class AbstractAutoencoder(torch.nn.Module): | |
| """ | |
| This is the base class for all autoencoders, including image autoencoders, image autoencoders with discriminators, | |
| unCLIP models, etc. Hence, it is fairly general, and specific features | |
| (e.g. discriminator training, encoding, decoding) must be implemented in subclasses. | |
| """ | |
| def __init__( | |
| self, | |
| ema_decay: Union[None, float] = None, | |
| monitor: Union[None, str] = None, | |
| input_key: str = "jpg", | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| self.input_key = input_key | |
| self.use_ema = ema_decay is not None | |
| if monitor is not None: | |
| self.monitor = monitor | |
| if self.use_ema: | |
| self.model_ema = LitEma(self, decay=ema_decay) | |
| logging.info(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") | |
| def get_input(self, batch) -> Any: | |
| raise NotImplementedError() | |
| def on_train_batch_end(self, *args, **kwargs): | |
| # for EMA computation | |
| if self.use_ema: | |
| self.model_ema(self) | |
| def ema_scope(self, context=None): | |
| if self.use_ema: | |
| self.model_ema.store(self.parameters()) | |
| self.model_ema.copy_to(self) | |
| if context is not None: | |
| logging.info(f"{context}: Switched to EMA weights") | |
| try: | |
| yield None | |
| finally: | |
| if self.use_ema: | |
| self.model_ema.restore(self.parameters()) | |
| if context is not None: | |
| logging.info(f"{context}: Restored training weights") | |
| def encode(self, *args, **kwargs) -> torch.Tensor: | |
| raise NotImplementedError("encode()-method of abstract base class called") | |
| def decode(self, *args, **kwargs) -> torch.Tensor: | |
| raise NotImplementedError("decode()-method of abstract base class called") | |
| def instantiate_optimizer_from_config(self, params, lr, cfg): | |
| logging.info(f"loading >>> {cfg['target']} <<< optimizer from config") | |
| return get_obj_from_str(cfg["target"])( | |
| params, lr=lr, **cfg.get("params", dict()) | |
| ) | |
| def configure_optimizers(self) -> Any: | |
| raise NotImplementedError() | |
| class AutoencodingEngine(AbstractAutoencoder): | |
| """ | |
| Base class for all image autoencoders that we train, like VQGAN or AutoencoderKL | |
| (we also restore them explicitly as special cases for legacy reasons). | |
| Regularizations such as KL or VQ are moved to the regularizer class. | |
| """ | |
| def __init__( | |
| self, | |
| *args, | |
| encoder_config: Dict, | |
| decoder_config: Dict, | |
| regularizer_config: Dict, | |
| **kwargs, | |
| ): | |
| super().__init__(*args, **kwargs) | |
| self.encoder: torch.nn.Module = instantiate_from_config(encoder_config) | |
| self.decoder: torch.nn.Module = instantiate_from_config(decoder_config) | |
| self.regularization = instantiate_from_config( | |
| regularizer_config | |
| ) | |
| def get_last_layer(self): | |
| return self.decoder.get_last_layer() | |
| def encode( | |
| self, | |
| x: torch.Tensor, | |
| return_reg_log: bool = False, | |
| unregularized: bool = False, | |
| ) -> Union[torch.Tensor, Tuple[torch.Tensor, dict]]: | |
| z = self.encoder(x) | |
| if unregularized: | |
| return z, dict() | |
| z, reg_log = self.regularization(z) | |
| if return_reg_log: | |
| return z, reg_log | |
| return z | |
| def decode(self, z: torch.Tensor, **kwargs) -> torch.Tensor: | |
| x = self.decoder(z, **kwargs) | |
| return x | |
| def forward( | |
| self, x: torch.Tensor, **additional_decode_kwargs | |
| ) -> Tuple[torch.Tensor, torch.Tensor, dict]: | |
| z, reg_log = self.encode(x, return_reg_log=True) | |
| dec = self.decode(z, **additional_decode_kwargs) | |
| return z, dec, reg_log | |
| class AutoencodingEngineLegacy(AutoencodingEngine): | |
| def __init__(self, embed_dim: int, **kwargs): | |
| self.max_batch_size = kwargs.pop("max_batch_size", None) | |
| ddconfig = kwargs.pop("ddconfig") | |
| super().__init__( | |
| encoder_config={ | |
| "target": "comfy.ldm.modules.diffusionmodules.model.Encoder", | |
| "params": ddconfig, | |
| }, | |
| decoder_config={ | |
| "target": "comfy.ldm.modules.diffusionmodules.model.Decoder", | |
| "params": ddconfig, | |
| }, | |
| **kwargs, | |
| ) | |
| if ddconfig.get("conv3d", False): | |
| conv_op = comfy.ops.disable_weight_init.Conv3d | |
| else: | |
| conv_op = comfy.ops.disable_weight_init.Conv2d | |
| self.quant_conv = conv_op( | |
| (1 + ddconfig["double_z"]) * ddconfig["z_channels"], | |
| (1 + ddconfig["double_z"]) * embed_dim, | |
| 1, | |
| ) | |
| self.post_quant_conv = conv_op(embed_dim, ddconfig["z_channels"], 1) | |
| self.embed_dim = embed_dim | |
| def get_autoencoder_params(self) -> list: | |
| params = super().get_autoencoder_params() | |
| return params | |
| def encode( | |
| self, x: torch.Tensor, return_reg_log: bool = False | |
| ) -> Union[torch.Tensor, Tuple[torch.Tensor, dict]]: | |
| if self.max_batch_size is None: | |
| z = self.encoder(x) | |
| z = self.quant_conv(z) | |
| else: | |
| N = x.shape[0] | |
| bs = self.max_batch_size | |
| n_batches = int(math.ceil(N / bs)) | |
| z = list() | |
| for i_batch in range(n_batches): | |
| z_batch = self.encoder(x[i_batch * bs : (i_batch + 1) * bs]) | |
| z_batch = self.quant_conv(z_batch) | |
| z.append(z_batch) | |
| z = torch.cat(z, 0) | |
| z, reg_log = self.regularization(z) | |
| if return_reg_log: | |
| return z, reg_log | |
| return z | |
| def decode(self, z: torch.Tensor, **decoder_kwargs) -> torch.Tensor: | |
| if self.max_batch_size is None: | |
| dec = self.post_quant_conv(z) | |
| dec = self.decoder(dec, **decoder_kwargs) | |
| else: | |
| N = z.shape[0] | |
| bs = self.max_batch_size | |
| n_batches = int(math.ceil(N / bs)) | |
| dec = list() | |
| for i_batch in range(n_batches): | |
| dec_batch = self.post_quant_conv(z[i_batch * bs : (i_batch + 1) * bs]) | |
| dec_batch = self.decoder(dec_batch, **decoder_kwargs) | |
| dec.append(dec_batch) | |
| dec = torch.cat(dec, 0) | |
| return dec | |
| class AutoencoderKL(AutoencodingEngineLegacy): | |
| def __init__(self, **kwargs): | |
| if "lossconfig" in kwargs: | |
| kwargs["loss_config"] = kwargs.pop("lossconfig") | |
| super().__init__( | |
| regularizer_config={ | |
| "target": ( | |
| "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer" | |
| ) | |
| }, | |
| **kwargs, | |
| ) | |