Spaces:
Running
on
Zero
Running
on
Zero
| from comfy.comfy_types import IO, ComfyNodeABC, InputTypeDict | |
| import torch | |
| class RenormCFG: | |
| def INPUT_TYPES(s): | |
| return {"required": { "model": ("MODEL",), | |
| "cfg_trunc": ("FLOAT", {"default": 100, "min": 0.0, "max": 100.0, "step": 0.01}), | |
| "renorm_cfg": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01}), | |
| }} | |
| RETURN_TYPES = ("MODEL",) | |
| FUNCTION = "patch" | |
| CATEGORY = "advanced/model" | |
| def patch(self, model, cfg_trunc, renorm_cfg): | |
| def renorm_cfg_func(args): | |
| cond_denoised = args["cond_denoised"] | |
| uncond_denoised = args["uncond_denoised"] | |
| cond_scale = args["cond_scale"] | |
| timestep = args["timestep"] | |
| x_orig = args["input"] | |
| in_channels = model.model.diffusion_model.in_channels | |
| if timestep[0] < cfg_trunc: | |
| cond_eps, uncond_eps = cond_denoised[:, :in_channels], uncond_denoised[:, :in_channels] | |
| cond_rest, _ = cond_denoised[:, in_channels:], uncond_denoised[:, in_channels:] | |
| half_eps = uncond_eps + cond_scale * (cond_eps - uncond_eps) | |
| half_rest = cond_rest | |
| if float(renorm_cfg) > 0.0: | |
| ori_pos_norm = torch.linalg.vector_norm(cond_eps | |
| , dim=tuple(range(1, len(cond_eps.shape))), keepdim=True | |
| ) | |
| max_new_norm = ori_pos_norm * float(renorm_cfg) | |
| new_pos_norm = torch.linalg.vector_norm( | |
| half_eps, dim=tuple(range(1, len(half_eps.shape))), keepdim=True | |
| ) | |
| if new_pos_norm >= max_new_norm: | |
| half_eps = half_eps * (max_new_norm / new_pos_norm) | |
| else: | |
| cond_eps, uncond_eps = cond_denoised[:, :in_channels], uncond_denoised[:, :in_channels] | |
| cond_rest, _ = cond_denoised[:, in_channels:], uncond_denoised[:, in_channels:] | |
| half_eps = cond_eps | |
| half_rest = cond_rest | |
| cfg_result = torch.cat([half_eps, half_rest], dim=1) | |
| # cfg_result = uncond_denoised + (cond_denoised - uncond_denoised) * cond_scale | |
| return x_orig - cfg_result | |
| m = model.clone() | |
| m.set_model_sampler_cfg_function(renorm_cfg_func) | |
| return (m, ) | |
| class CLIPTextEncodeLumina2(ComfyNodeABC): | |
| SYSTEM_PROMPT = { | |
| "superior": "You are an assistant designed to generate superior images with the superior "\ | |
| "degree of image-text alignment based on textual prompts or user prompts.", | |
| "alignment": "You are an assistant designed to generate high-quality images with the "\ | |
| "highest degree of image-text alignment based on textual prompts." | |
| } | |
| SYSTEM_PROMPT_TIP = "Lumina2 provide two types of system prompts:" \ | |
| "Superior: You are an assistant designed to generate superior images with the superior "\ | |
| "degree of image-text alignment based on textual prompts or user prompts. "\ | |
| "Alignment: You are an assistant designed to generate high-quality images with the highest "\ | |
| "degree of image-text alignment based on textual prompts." | |
| def INPUT_TYPES(s) -> InputTypeDict: | |
| return { | |
| "required": { | |
| "system_prompt": (list(CLIPTextEncodeLumina2.SYSTEM_PROMPT.keys()), {"tooltip": CLIPTextEncodeLumina2.SYSTEM_PROMPT_TIP}), | |
| "user_prompt": (IO.STRING, {"multiline": True, "dynamicPrompts": True, "tooltip": "The text to be encoded."}), | |
| "clip": (IO.CLIP, {"tooltip": "The CLIP model used for encoding the text."}) | |
| } | |
| } | |
| RETURN_TYPES = (IO.CONDITIONING,) | |
| OUTPUT_TOOLTIPS = ("A conditioning containing the embedded text used to guide the diffusion model.",) | |
| FUNCTION = "encode" | |
| CATEGORY = "conditioning" | |
| DESCRIPTION = "Encodes a system prompt and a user prompt using a CLIP model into an embedding that can be used to guide the diffusion model towards generating specific images." | |
| def encode(self, clip, user_prompt, system_prompt): | |
| if clip is None: | |
| raise RuntimeError("ERROR: clip input is invalid: None\n\nIf the clip is from a checkpoint loader node your checkpoint does not contain a valid clip or text encoder model.") | |
| system_prompt = CLIPTextEncodeLumina2.SYSTEM_PROMPT[system_prompt] | |
| prompt = f'{system_prompt} <Prompt Start> {user_prompt}' | |
| tokens = clip.tokenize(prompt) | |
| return (clip.encode_from_tokens_scheduled(tokens), ) | |
| NODE_CLASS_MAPPINGS = { | |
| "CLIPTextEncodeLumina2": CLIPTextEncodeLumina2, | |
| "RenormCFG": RenormCFG | |
| } | |
| NODE_DISPLAY_NAME_MAPPINGS = { | |
| "CLIPTextEncodeLumina2": "CLIP Text Encode for Lumina2", | |
| } | |