Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import comfy.model_management | |
| import comfy.utils | |
| import folder_paths | |
| import os | |
| import logging | |
| from enum import Enum | |
| CLAMP_QUANTILE = 0.99 | |
| def extract_lora(diff, rank): | |
| conv2d = (len(diff.shape) == 4) | |
| kernel_size = None if not conv2d else diff.size()[2:4] | |
| conv2d_3x3 = conv2d and kernel_size != (1, 1) | |
| out_dim, in_dim = diff.size()[0:2] | |
| rank = min(rank, in_dim, out_dim) | |
| if conv2d: | |
| if conv2d_3x3: | |
| diff = diff.flatten(start_dim=1) | |
| else: | |
| diff = diff.squeeze() | |
| U, S, Vh = torch.linalg.svd(diff.float()) | |
| U = U[:, :rank] | |
| S = S[:rank] | |
| U = U @ torch.diag(S) | |
| Vh = Vh[:rank, :] | |
| dist = torch.cat([U.flatten(), Vh.flatten()]) | |
| hi_val = torch.quantile(dist, CLAMP_QUANTILE) | |
| low_val = -hi_val | |
| U = U.clamp(low_val, hi_val) | |
| Vh = Vh.clamp(low_val, hi_val) | |
| if conv2d: | |
| U = U.reshape(out_dim, rank, 1, 1) | |
| Vh = Vh.reshape(rank, in_dim, kernel_size[0], kernel_size[1]) | |
| return (U, Vh) | |
| class LORAType(Enum): | |
| STANDARD = 0 | |
| FULL_DIFF = 1 | |
| LORA_TYPES = {"standard": LORAType.STANDARD, | |
| "full_diff": LORAType.FULL_DIFF} | |
| def calc_lora_model(model_diff, rank, prefix_model, prefix_lora, output_sd, lora_type, bias_diff=False): | |
| comfy.model_management.load_models_gpu([model_diff], force_patch_weights=True) | |
| sd = model_diff.model_state_dict(filter_prefix=prefix_model) | |
| for k in sd: | |
| if k.endswith(".weight"): | |
| weight_diff = sd[k] | |
| if lora_type == LORAType.STANDARD: | |
| if weight_diff.ndim < 2: | |
| if bias_diff: | |
| output_sd["{}{}.diff".format(prefix_lora, k[len(prefix_model):-7])] = weight_diff.contiguous().half().cpu() | |
| continue | |
| try: | |
| out = extract_lora(weight_diff, rank) | |
| output_sd["{}{}.lora_up.weight".format(prefix_lora, k[len(prefix_model):-7])] = out[0].contiguous().half().cpu() | |
| output_sd["{}{}.lora_down.weight".format(prefix_lora, k[len(prefix_model):-7])] = out[1].contiguous().half().cpu() | |
| except: | |
| logging.warning("Could not generate lora weights for key {}, is the weight difference a zero?".format(k)) | |
| elif lora_type == LORAType.FULL_DIFF: | |
| output_sd["{}{}.diff".format(prefix_lora, k[len(prefix_model):-7])] = weight_diff.contiguous().half().cpu() | |
| elif bias_diff and k.endswith(".bias"): | |
| output_sd["{}{}.diff_b".format(prefix_lora, k[len(prefix_model):-5])] = sd[k].contiguous().half().cpu() | |
| return output_sd | |
| class LoraSave: | |
| def __init__(self): | |
| self.output_dir = folder_paths.get_output_directory() | |
| def INPUT_TYPES(s): | |
| return {"required": {"filename_prefix": ("STRING", {"default": "loras/ComfyUI_extracted_lora"}), | |
| "rank": ("INT", {"default": 8, "min": 1, "max": 4096, "step": 1}), | |
| "lora_type": (tuple(LORA_TYPES.keys()),), | |
| "bias_diff": ("BOOLEAN", {"default": True}), | |
| }, | |
| "optional": {"model_diff": ("MODEL", {"tooltip": "The ModelSubtract output to be converted to a lora."}), | |
| "text_encoder_diff": ("CLIP", {"tooltip": "The CLIPSubtract output to be converted to a lora."})}, | |
| } | |
| RETURN_TYPES = () | |
| FUNCTION = "save" | |
| OUTPUT_NODE = True | |
| CATEGORY = "_for_testing" | |
| def save(self, filename_prefix, rank, lora_type, bias_diff, model_diff=None, text_encoder_diff=None): | |
| if model_diff is None and text_encoder_diff is None: | |
| return {} | |
| lora_type = LORA_TYPES.get(lora_type) | |
| full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir) | |
| output_sd = {} | |
| if model_diff is not None: | |
| output_sd = calc_lora_model(model_diff, rank, "diffusion_model.", "diffusion_model.", output_sd, lora_type, bias_diff=bias_diff) | |
| if text_encoder_diff is not None: | |
| output_sd = calc_lora_model(text_encoder_diff.patcher, rank, "", "text_encoders.", output_sd, lora_type, bias_diff=bias_diff) | |
| output_checkpoint = f"{filename}_{counter:05}_.safetensors" | |
| output_checkpoint = os.path.join(full_output_folder, output_checkpoint) | |
| comfy.utils.save_torch_file(output_sd, output_checkpoint, metadata=None) | |
| return {} | |
| NODE_CLASS_MAPPINGS = { | |
| "LoraSave": LoraSave | |
| } | |
| NODE_DISPLAY_NAME_MAPPINGS = { | |
| "LoraSave": "Extract and Save Lora" | |
| } | |