Spaces:
Running
on
Zero
Running
on
Zero
| import nodes | |
| import torch | |
| import comfy.model_management | |
| import comfy.utils | |
| class EmptyCosmosLatentVideo: | |
| def INPUT_TYPES(s): | |
| return {"required": { "width": ("INT", {"default": 1280, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), | |
| "height": ("INT", {"default": 704, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), | |
| "length": ("INT", {"default": 121, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 8}), | |
| "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}} | |
| RETURN_TYPES = ("LATENT",) | |
| FUNCTION = "generate" | |
| CATEGORY = "latent/video" | |
| def generate(self, width, height, length, batch_size=1): | |
| latent = torch.zeros([batch_size, 16, ((length - 1) // 8) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device()) | |
| return ({"samples": latent}, ) | |
| def vae_encode_with_padding(vae, image, width, height, length, padding=0): | |
| pixels = comfy.utils.common_upscale(image[..., :3].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1) | |
| pixel_len = min(pixels.shape[0], length) | |
| padded_length = min(length, (((pixel_len - 1) // 8) + 1 + padding) * 8 - 7) | |
| padded_pixels = torch.ones((padded_length, height, width, 3)) * 0.5 | |
| padded_pixels[:pixel_len] = pixels[:pixel_len] | |
| latent_len = ((pixel_len - 1) // 8) + 1 | |
| latent_temp = vae.encode(padded_pixels) | |
| return latent_temp[:, :, :latent_len] | |
| class CosmosImageToVideoLatent: | |
| def INPUT_TYPES(s): | |
| return {"required": {"vae": ("VAE", ), | |
| "width": ("INT", {"default": 1280, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), | |
| "height": ("INT", {"default": 704, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), | |
| "length": ("INT", {"default": 121, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 8}), | |
| "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}), | |
| }, | |
| "optional": {"start_image": ("IMAGE", ), | |
| "end_image": ("IMAGE", ), | |
| }} | |
| RETURN_TYPES = ("LATENT",) | |
| FUNCTION = "encode" | |
| CATEGORY = "conditioning/inpaint" | |
| def encode(self, vae, width, height, length, batch_size, start_image=None, end_image=None): | |
| latent = torch.zeros([1, 16, ((length - 1) // 8) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device()) | |
| if start_image is None and end_image is None: | |
| out_latent = {} | |
| out_latent["samples"] = latent | |
| return (out_latent,) | |
| mask = torch.ones([latent.shape[0], 1, ((length - 1) // 8) + 1, latent.shape[-2], latent.shape[-1]], device=comfy.model_management.intermediate_device()) | |
| if start_image is not None: | |
| latent_temp = vae_encode_with_padding(vae, start_image, width, height, length, padding=1) | |
| latent[:, :, :latent_temp.shape[-3]] = latent_temp | |
| mask[:, :, :latent_temp.shape[-3]] *= 0.0 | |
| if end_image is not None: | |
| latent_temp = vae_encode_with_padding(vae, end_image, width, height, length, padding=0) | |
| latent[:, :, -latent_temp.shape[-3]:] = latent_temp | |
| mask[:, :, -latent_temp.shape[-3]:] *= 0.0 | |
| out_latent = {} | |
| out_latent["samples"] = latent.repeat((batch_size, ) + (1,) * (latent.ndim - 1)) | |
| out_latent["noise_mask"] = mask.repeat((batch_size, ) + (1,) * (mask.ndim - 1)) | |
| return (out_latent,) | |
| NODE_CLASS_MAPPINGS = { | |
| "EmptyCosmosLatentVideo": EmptyCosmosLatentVideo, | |
| "CosmosImageToVideoLatent": CosmosImageToVideoLatent, | |
| } | |