Spaces:
Running
on
Zero
Running
on
Zero
| # Modified from https://github.com/mseitzer/pytorch-fid/blob/master/pytorch_fid/inception.py # noqa: E501 | |
| # For FID metric | |
| import os | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from torch.utils.model_zoo import load_url | |
| from torchvision import models | |
| # Inception weights ported to Pytorch from | |
| # http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz | |
| FID_WEIGHTS_URL = 'https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth' # noqa: E501 | |
| LOCAL_FID_WEIGHTS = 'experiments/pretrained_models/pt_inception-2015-12-05-6726825d.pth' # noqa: E501 | |
| class InceptionV3(nn.Module): | |
| """Pretrained InceptionV3 network returning feature maps""" | |
| # Index of default block of inception to return, | |
| # corresponds to output of final average pooling | |
| DEFAULT_BLOCK_INDEX = 3 | |
| # Maps feature dimensionality to their output blocks indices | |
| BLOCK_INDEX_BY_DIM = { | |
| 64: 0, # First max pooling features | |
| 192: 1, # Second max pooling features | |
| 768: 2, # Pre-aux classifier features | |
| 2048: 3 # Final average pooling features | |
| } | |
| def __init__(self, | |
| output_blocks=(DEFAULT_BLOCK_INDEX), | |
| resize_input=True, | |
| normalize_input=True, | |
| requires_grad=False, | |
| use_fid_inception=True): | |
| """Build pretrained InceptionV3. | |
| Args: | |
| output_blocks (list[int]): Indices of blocks to return features of. | |
| Possible values are: | |
| - 0: corresponds to output of first max pooling | |
| - 1: corresponds to output of second max pooling | |
| - 2: corresponds to output which is fed to aux classifier | |
| - 3: corresponds to output of final average pooling | |
| resize_input (bool): If true, bilinearly resizes input to width and | |
| height 299 before feeding input to model. As the network | |
| without fully connected layers is fully convolutional, it | |
| should be able to handle inputs of arbitrary size, so resizing | |
| might not be strictly needed. Default: True. | |
| normalize_input (bool): If true, scales the input from range (0, 1) | |
| to the range the pretrained Inception network expects, | |
| namely (-1, 1). Default: True. | |
| requires_grad (bool): If true, parameters of the model require | |
| gradients. Possibly useful for finetuning the network. | |
| Default: False. | |
| use_fid_inception (bool): If true, uses the pretrained Inception | |
| model used in Tensorflow's FID implementation. | |
| If false, uses the pretrained Inception model available in | |
| torchvision. The FID Inception model has different weights | |
| and a slightly different structure from torchvision's | |
| Inception model. If you want to compute FID scores, you are | |
| strongly advised to set this parameter to true to get | |
| comparable results. Default: True. | |
| """ | |
| super(InceptionV3, self).__init__() | |
| self.resize_input = resize_input | |
| self.normalize_input = normalize_input | |
| self.output_blocks = sorted(output_blocks) | |
| self.last_needed_block = max(output_blocks) | |
| assert self.last_needed_block <= 3, ('Last possible output block index is 3') | |
| self.blocks = nn.ModuleList() | |
| if use_fid_inception: | |
| inception = fid_inception_v3() | |
| else: | |
| try: | |
| inception = models.inception_v3(pretrained=True, init_weights=False) | |
| except TypeError: | |
| # pytorch < 1.5 does not have init_weights for inception_v3 | |
| inception = models.inception_v3(pretrained=True) | |
| # Block 0: input to maxpool1 | |
| block0 = [ | |
| inception.Conv2d_1a_3x3, inception.Conv2d_2a_3x3, inception.Conv2d_2b_3x3, | |
| nn.MaxPool2d(kernel_size=3, stride=2) | |
| ] | |
| self.blocks.append(nn.Sequential(*block0)) | |
| # Block 1: maxpool1 to maxpool2 | |
| if self.last_needed_block >= 1: | |
| block1 = [inception.Conv2d_3b_1x1, inception.Conv2d_4a_3x3, nn.MaxPool2d(kernel_size=3, stride=2)] | |
| self.blocks.append(nn.Sequential(*block1)) | |
| # Block 2: maxpool2 to aux classifier | |
| if self.last_needed_block >= 2: | |
| block2 = [ | |
| inception.Mixed_5b, | |
| inception.Mixed_5c, | |
| inception.Mixed_5d, | |
| inception.Mixed_6a, | |
| inception.Mixed_6b, | |
| inception.Mixed_6c, | |
| inception.Mixed_6d, | |
| inception.Mixed_6e, | |
| ] | |
| self.blocks.append(nn.Sequential(*block2)) | |
| # Block 3: aux classifier to final avgpool | |
| if self.last_needed_block >= 3: | |
| block3 = [ | |
| inception.Mixed_7a, inception.Mixed_7b, inception.Mixed_7c, | |
| nn.AdaptiveAvgPool2d(output_size=(1, 1)) | |
| ] | |
| self.blocks.append(nn.Sequential(*block3)) | |
| for param in self.parameters(): | |
| param.requires_grad = requires_grad | |
| def forward(self, x): | |
| """Get Inception feature maps. | |
| Args: | |
| x (Tensor): Input tensor of shape (b, 3, h, w). | |
| Values are expected to be in range (-1, 1). You can also input | |
| (0, 1) with setting normalize_input = True. | |
| Returns: | |
| list[Tensor]: Corresponding to the selected output block, sorted | |
| ascending by index. | |
| """ | |
| output = [] | |
| if self.resize_input: | |
| x = F.interpolate(x, size=(299, 299), mode='bilinear', align_corners=False) | |
| if self.normalize_input: | |
| x = 2 * x - 1 # Scale from range (0, 1) to range (-1, 1) | |
| for idx, block in enumerate(self.blocks): | |
| x = block(x) | |
| if idx in self.output_blocks: | |
| output.append(x) | |
| if idx == self.last_needed_block: | |
| break | |
| return output | |
| def fid_inception_v3(): | |
| """Build pretrained Inception model for FID computation. | |
| The Inception model for FID computation uses a different set of weights | |
| and has a slightly different structure than torchvision's Inception. | |
| This method first constructs torchvision's Inception and then patches the | |
| necessary parts that are different in the FID Inception model. | |
| """ | |
| try: | |
| inception = models.inception_v3(num_classes=1008, aux_logits=False, pretrained=False, init_weights=False) | |
| except TypeError: | |
| # pytorch < 1.5 does not have init_weights for inception_v3 | |
| inception = models.inception_v3(num_classes=1008, aux_logits=False, pretrained=False) | |
| inception.Mixed_5b = FIDInceptionA(192, pool_features=32) | |
| inception.Mixed_5c = FIDInceptionA(256, pool_features=64) | |
| inception.Mixed_5d = FIDInceptionA(288, pool_features=64) | |
| inception.Mixed_6b = FIDInceptionC(768, channels_7x7=128) | |
| inception.Mixed_6c = FIDInceptionC(768, channels_7x7=160) | |
| inception.Mixed_6d = FIDInceptionC(768, channels_7x7=160) | |
| inception.Mixed_6e = FIDInceptionC(768, channels_7x7=192) | |
| inception.Mixed_7b = FIDInceptionE_1(1280) | |
| inception.Mixed_7c = FIDInceptionE_2(2048) | |
| if os.path.exists(LOCAL_FID_WEIGHTS): | |
| state_dict = torch.load(LOCAL_FID_WEIGHTS, map_location=lambda storage, loc: storage) | |
| else: | |
| state_dict = load_url(FID_WEIGHTS_URL, progress=True) | |
| inception.load_state_dict(state_dict) | |
| return inception | |
| class FIDInceptionA(models.inception.InceptionA): | |
| """InceptionA block patched for FID computation""" | |
| def __init__(self, in_channels, pool_features): | |
| super(FIDInceptionA, self).__init__(in_channels, pool_features) | |
| def forward(self, x): | |
| branch1x1 = self.branch1x1(x) | |
| branch5x5 = self.branch5x5_1(x) | |
| branch5x5 = self.branch5x5_2(branch5x5) | |
| branch3x3dbl = self.branch3x3dbl_1(x) | |
| branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) | |
| branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) | |
| # Patch: Tensorflow's average pool does not use the padded zero's in | |
| # its average calculation | |
| branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, count_include_pad=False) | |
| branch_pool = self.branch_pool(branch_pool) | |
| outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool] | |
| return torch.cat(outputs, 1) | |
| class FIDInceptionC(models.inception.InceptionC): | |
| """InceptionC block patched for FID computation""" | |
| def __init__(self, in_channels, channels_7x7): | |
| super(FIDInceptionC, self).__init__(in_channels, channels_7x7) | |
| def forward(self, x): | |
| branch1x1 = self.branch1x1(x) | |
| branch7x7 = self.branch7x7_1(x) | |
| branch7x7 = self.branch7x7_2(branch7x7) | |
| branch7x7 = self.branch7x7_3(branch7x7) | |
| branch7x7dbl = self.branch7x7dbl_1(x) | |
| branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl) | |
| branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl) | |
| branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl) | |
| branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl) | |
| # Patch: Tensorflow's average pool does not use the padded zero's in | |
| # its average calculation | |
| branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, count_include_pad=False) | |
| branch_pool = self.branch_pool(branch_pool) | |
| outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool] | |
| return torch.cat(outputs, 1) | |
| class FIDInceptionE_1(models.inception.InceptionE): | |
| """First InceptionE block patched for FID computation""" | |
| def __init__(self, in_channels): | |
| super(FIDInceptionE_1, self).__init__(in_channels) | |
| def forward(self, x): | |
| branch1x1 = self.branch1x1(x) | |
| branch3x3 = self.branch3x3_1(x) | |
| branch3x3 = [ | |
| self.branch3x3_2a(branch3x3), | |
| self.branch3x3_2b(branch3x3), | |
| ] | |
| branch3x3 = torch.cat(branch3x3, 1) | |
| branch3x3dbl = self.branch3x3dbl_1(x) | |
| branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) | |
| branch3x3dbl = [ | |
| self.branch3x3dbl_3a(branch3x3dbl), | |
| self.branch3x3dbl_3b(branch3x3dbl), | |
| ] | |
| branch3x3dbl = torch.cat(branch3x3dbl, 1) | |
| # Patch: Tensorflow's average pool does not use the padded zero's in | |
| # its average calculation | |
| branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, count_include_pad=False) | |
| branch_pool = self.branch_pool(branch_pool) | |
| outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] | |
| return torch.cat(outputs, 1) | |
| class FIDInceptionE_2(models.inception.InceptionE): | |
| """Second InceptionE block patched for FID computation""" | |
| def __init__(self, in_channels): | |
| super(FIDInceptionE_2, self).__init__(in_channels) | |
| def forward(self, x): | |
| branch1x1 = self.branch1x1(x) | |
| branch3x3 = self.branch3x3_1(x) | |
| branch3x3 = [ | |
| self.branch3x3_2a(branch3x3), | |
| self.branch3x3_2b(branch3x3), | |
| ] | |
| branch3x3 = torch.cat(branch3x3, 1) | |
| branch3x3dbl = self.branch3x3dbl_1(x) | |
| branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) | |
| branch3x3dbl = [ | |
| self.branch3x3dbl_3a(branch3x3dbl), | |
| self.branch3x3dbl_3b(branch3x3dbl), | |
| ] | |
| branch3x3dbl = torch.cat(branch3x3dbl, 1) | |
| # Patch: The FID Inception model uses max pooling instead of average | |
| # pooling. This is likely an error in this specific Inception | |
| # implementation, as other Inception models use average pooling here | |
| # (which matches the description in the paper). | |
| branch_pool = F.max_pool2d(x, kernel_size=3, stride=1, padding=1) | |
| branch_pool = self.branch_pool(branch_pool) | |
| outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] | |
| return torch.cat(outputs, 1) | |