File size: 5,638 Bytes
50eec37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import nodes
import node_helpers
import torch
import comfy.model_management


class CLIPTextEncodeHunyuanDiT:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "clip": ("CLIP", ),
            "bert": ("STRING", {"multiline": True, "dynamicPrompts": True}),
            "mt5xl": ("STRING", {"multiline": True, "dynamicPrompts": True}),
            }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

    CATEGORY = "advanced/conditioning"

    def encode(self, clip, bert, mt5xl):
        tokens = clip.tokenize(bert)
        tokens["mt5xl"] = clip.tokenize(mt5xl)["mt5xl"]

        return (clip.encode_from_tokens_scheduled(tokens), )

class EmptyHunyuanLatentVideo:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "width": ("INT", {"default": 848, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
                              "height": ("INT", {"default": 480, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
                              "length": ("INT", {"default": 25, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 4}),
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

    CATEGORY = "latent/video"

    def generate(self, width, height, length, batch_size=1):
        latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
        return ({"samples":latent}, )

PROMPT_TEMPLATE_ENCODE_VIDEO_I2V = (
    "<|start_header_id|>system<|end_header_id|>\n\n<image>\nDescribe the video by detailing the following aspects according to the reference image: "
    "1. The main content and theme of the video."
    "2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects."
    "3. Actions, events, behaviors temporal relationships, physical movement changes of the objects."
    "4. background environment, light, style and atmosphere."
    "5. camera angles, movements, and transitions used in the video:<|eot_id|>\n\n"
    "<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>"
    "<|start_header_id|>assistant<|end_header_id|>\n\n"
)

class TextEncodeHunyuanVideo_ImageToVideo:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "clip": ("CLIP", ),
            "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
            "prompt": ("STRING", {"multiline": True, "dynamicPrompts": True}),
            "image_interleave": ("INT", {"default": 2, "min": 1, "max": 512, "tooltip": "How much the image influences things vs the text prompt. Higher number means more influence from the text prompt."}),
            }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

    CATEGORY = "advanced/conditioning"

    def encode(self, clip, clip_vision_output, prompt, image_interleave):
        tokens = clip.tokenize(prompt, llama_template=PROMPT_TEMPLATE_ENCODE_VIDEO_I2V, image_embeds=clip_vision_output.mm_projected, image_interleave=image_interleave)
        return (clip.encode_from_tokens_scheduled(tokens), )

class HunyuanImageToVideo:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"positive": ("CONDITIONING", ),
                             "vae": ("VAE", ),
                             "width": ("INT", {"default": 848, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
                             "height": ("INT", {"default": 480, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
                             "length": ("INT", {"default": 53, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 4}),
                             "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
                             "guidance_type": (["v1 (concat)", "v2 (replace)"], )
                },
                "optional": {"start_image": ("IMAGE", ),
                }}

    RETURN_TYPES = ("CONDITIONING", "LATENT")
    RETURN_NAMES = ("positive", "latent")
    FUNCTION = "encode"

    CATEGORY = "conditioning/video_models"

    def encode(self, positive, vae, width, height, length, batch_size, guidance_type, start_image=None):
        latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
        out_latent = {}

        if start_image is not None:
            start_image = comfy.utils.common_upscale(start_image[:length, :, :, :3].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)

            concat_latent_image = vae.encode(start_image)
            mask = torch.ones((1, 1, latent.shape[2], concat_latent_image.shape[-2], concat_latent_image.shape[-1]), device=start_image.device, dtype=start_image.dtype)
            mask[:, :, :((start_image.shape[0] - 1) // 4) + 1] = 0.0

            if guidance_type == "v1 (concat)":
                cond = {"concat_latent_image": concat_latent_image, "concat_mask": mask}
            else:
                cond = {'guiding_frame_index': 0}
                latent[:, :, :concat_latent_image.shape[2]] = concat_latent_image
                out_latent["noise_mask"] = mask

            positive = node_helpers.conditioning_set_values(positive, cond)

        out_latent["samples"] = latent
        return (positive, out_latent)



NODE_CLASS_MAPPINGS = {
    "CLIPTextEncodeHunyuanDiT": CLIPTextEncodeHunyuanDiT,
    "TextEncodeHunyuanVideo_ImageToVideo": TextEncodeHunyuanVideo_ImageToVideo,
    "EmptyHunyuanLatentVideo": EmptyHunyuanLatentVideo,
    "HunyuanImageToVideo": HunyuanImageToVideo,
}