File size: 13,008 Bytes
e9b2bf3
50eec37
 
 
 
 
1c237e7
7680376
1972eaa
50eec37
e9b2bf3
 
1c237e7
7680376
e9b2bf3
50eec37
 
e9b2bf3
7680376
f7747cb
 
7680376
 
 
 
 
 
 
 
 
 
 
 
09df6e5
afe2486
09df6e5
 
 
afe2486
 
 
 
 
 
 
 
 
 
09df6e5
 
 
20dcbc9
09df6e5
 
e9b2bf3
 
 
 
1c237e7
e9b2bf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d636e1
e9b2bf3
4bb9b6b
e9b2bf3
09df6e5
3d636e1
09df6e5
 
e9b2bf3
 
 
f7747cb
e9b2bf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50eec37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1d5d34
 
 
 
 
c135610
e1d5d34
 
 
 
 
1972eaa
e1d5d34
1972eaa
e1d5d34
 
50eec37
 
 
1c237e7
e9b2bf3
50eec37
1972eaa
50eec37
 
 
 
 
1c237e7
2941d7e
 
 
 
 
e9b2bf3
 
 
 
 
 
 
 
 
50eec37
e9b2bf3
 
 
 
 
 
 
 
 
 
 
 
 
3d636e1
e9b2bf3
50eec37
e9b2bf3
3d636e1
e9b2bf3
 
50eec37
e9b2bf3
2941d7e
 
e9b2bf3
 
 
 
 
 
50eec37
1c237e7
 
6231739
1c237e7
e9b2bf3
9a48b83
1c237e7
e1d5d34
 
 
 
1972eaa
 
 
 
 
1c237e7
50eec37
 
 
1b66097
59cd0a4
50eec37
1b66097
 
7680376
276f9da
6bdcae3
 
7ade22f
 
50eec37
6bdcae3
a6d619e
c186242
d540c9c
09b97b3
6bdcae3
7ade22f
 
 
 
 
aec6dd4
 
 
 
9715c38
a6d619e
aec6dd4
 
 
 
 
6bdcae3
 
 
d3ea6db
 
 
 
 
 
 
 
 
 
 
 
 
 
6bdcae3
09b97b3
 
 
 
 
 
 
 
 
 
 
c6c98b5
09b97b3
 
 
96a51f0
 
 
a92c609
1b66097
96a51f0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import logging
import os
import sys
from typing import Any, Mapping, Sequence, Union

import gradio as gr
import numpy as np
import spaces
import time
import torch
import yaml
from huggingface_hub import hf_hub_download
from PIL import Image

import folder_paths
from nodes import NODE_CLASS_MAPPINGS

# Load available models from HF
hf_hub_download(
    repo_id="Phips/2xNomosUni_span_multijpg_ldl",
    filename="2xNomosUni_span_multijpg_ldl.safetensors",
    local_dir="models/upscale_models",
)
hf_hub_download(
    repo_id="ezioruan/inswapper_128.onnx",
    filename="inswapper_128.onnx",
    local_dir="models/insightface",
)
hf_hub_download(
    repo_id="ziixzz/codeformer-v0.1.0.pth",
    filename="codeformer-v0.1.0.pth",
    local_dir="models/facerestore_models",
)
hf_hub_download(
    repo_id="gmk123/GFPGAN",
    filename="detection_Resnet50_Final.pth",
    local_dir="models/facedetection",
)
hf_hub_download(
    repo_id="gmk123/GFPGAN",
    filename="parsing_parsenet.pth",
    local_dir="models/facedetection",
)
hf_hub_download(
    repo_id="vladmandic/insightface-faceanalysis",
    filename="buffalo_l.zip",
    local_dir="models/insightface/models",
)
hf_hub_download(
    repo_id="model2/advance_face_model",
    filename="advance_face_model.safetensors",
    local_dir="models/reactor/faces",
)


# ReActor has its own special snowflake installation
os.system("cd custom_nodes/ComfyUI-ReActor && python install.py")


def import_custom_nodes() -> None:
    """Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS

    This function sets up a new asyncio event loop, initializes the PromptServer,
    creates a PromptQueue, and initializes the custom nodes.
    """
    import asyncio

    import execution
    import server
    from nodes import init_extra_nodes

    # Creating a new event loop and setting it as the default loop
    loop = asyncio.new_event_loop()
    asyncio.set_event_loop(loop)

    # Creating an instance of PromptServer with the loop
    server_instance = server.PromptServer(loop)
    execution.PromptQueue(server_instance)

    # Initializing custom nodes
    init_extra_nodes()


# Preload nodes, models.
import_custom_nodes()
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
getimagesize = NODE_CLASS_MAPPINGS["GetImageSize+"]()
upscalemodelloader = NODE_CLASS_MAPPINGS["UpscaleModelLoader"]()
reactorloadfacemodel = NODE_CLASS_MAPPINGS["ReActorLoadFaceModel"]()
FACE_MODEL = reactorloadfacemodel.load_model(
    face_model="advance_face_model.safetensors"
)
imageresize = NODE_CLASS_MAPPINGS["ImageResize+"]()
reactorfaceswap = NODE_CLASS_MAPPINGS["ReActorFaceSwap"]()
imageupscalewithmodel = NODE_CLASS_MAPPINGS["ImageUpscaleWithModel"]()
UPSCALE_MODEL = upscalemodelloader.load_model(model_name="2xNomosUni_span_multijpg_ldl.safetensors")


def load_extra_path_config(yaml_path):
    with open(yaml_path, "r", encoding="utf-8") as stream:
        config = yaml.safe_load(stream)
    yaml_dir = os.path.dirname(os.path.abspath(yaml_path))
    for c in config:
        conf = config[c]
        if conf is None:
            continue
        base_path = None
        if "base_path" in conf:
            base_path = conf.pop("base_path")
            base_path = os.path.expandvars(os.path.expanduser(base_path))
            if not os.path.isabs(base_path):
                base_path = os.path.abspath(os.path.join(yaml_dir, base_path))
        is_default = False
        if "is_default" in conf:
            is_default = conf.pop("is_default")
        for x in conf:
            for y in conf[x].split("\n"):
                if len(y) == 0:
                    continue
                full_path = y
                if base_path:
                    full_path = os.path.join(base_path, full_path)
                elif not os.path.isabs(full_path):
                    full_path = os.path.abspath(os.path.join(yaml_dir, y))
                normalized_path = os.path.normpath(full_path)
                logging.info(
                    "Adding extra search path {} {}".format(x, normalized_path)
                )
                folder_paths.add_model_folder_path(x, normalized_path, is_default)


def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
    """Returns the value at the given index of a sequence or mapping.

    If the object is a sequence (like list or string), returns the value at the given index.
    If the object is a mapping (like a dictionary), returns the value at the index-th key.

    Some return a dictionary, in these cases, we look for the "results" key

    Args:
        obj (Union[Sequence, Mapping]): The object to retrieve the value from.
        index (int): The index of the value to retrieve.

    Returns:
        Any: The value at the given index.
    """
    try:
        return obj[index]
    except KeyError:
        return obj["result"][index]


def find_path(name: str, path: str = None) -> str:
    """
    Recursively looks at parent folders starting from the given path until it finds the given name.
    Returns the path as a Path object if found, or None otherwise.
    """
    # If no path is given, use the current working directory
    if path is None:
        path = os.getcwd()

    # Check if the current directory contains the name
    if name in os.listdir(path):
        path_name = os.path.join(path, name)
        print(f"{name} found: {path_name}")
        return path_name

    # Get the parent directory
    parent_directory = os.path.dirname(path)

    # If the parent directory is the same as the current directory, we've reached the root and stop the search
    if parent_directory == path:
        return None

    # Recursively call the function with the parent directory
    return find_path(name, parent_directory)


def add_comfyui_directory_to_sys_path() -> None:
    """
    Add 'ComfyUI' to the sys.path
    """
    comfyui_path = find_path("ComfyUI")
    if comfyui_path is not None and os.path.isdir(comfyui_path):
        sys.path.append(comfyui_path)
        print(f"'{comfyui_path}' added to sys.path")


def add_extra_model_paths() -> None:
    """
    Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path.
    """
    extra_model_paths = find_path("extra_model_paths.yaml")

    if extra_model_paths is not None:
        load_extra_path_config(extra_model_paths)
    else:
        print("Could not find the extra_model_paths config file.")


def clear_tmp_directory():
    print("Cleaning up /tmp directory...")
    image_extensions = {'.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff', '.webp'}
    for root, dirs, files in os.walk('/tmp'):
        for file in files:
            if not file.startswith('advance-blurred-') and not file.startswith('before.jpg') and not file.startswith('after.jpg'):
                ext = os.path.splitext(file)[1].lower()
                if ext in image_extensions:
                    full_path = os.path.join(root, file)
                    try:
                        os.remove(full_path)
                        print("Deleted an image.")
                    except Exception as e:
                        print("Failed to delete an image.")


add_comfyui_directory_to_sys_path()
add_extra_model_paths()


@spaces.GPU(duration=60)
def advance_blur(input_image):
    start_time = time.time()
    with torch.inference_mode():
        loaded_input_image = loadimage.load_image(
            image=input_image,
        )

        image_size = getimagesize.execute(
            image=get_value_at_index(loaded_input_image, 0),
        )
        original_width = get_value_at_index(image_size, 0)
        original_height = get_value_at_index(image_size, 1)

        resized_input_image = imageresize.execute(
            width=2560,
            height=2560,
            interpolation="bicubic",
            method="keep proportion",
            condition="downscale if bigger",
            multiple_of=0,
            image=get_value_at_index(loaded_input_image, 0),
        )

        swapped_image = reactorfaceswap.execute(
            enabled=True,
            swap_model="inswapper_128.onnx",
            facedetection="retinaface_resnet50",
            face_restore_model="codeformer-v0.1.0.pth",
            face_restore_visibility=1,
            codeformer_weight=1,
            detect_gender_input="no",
            detect_gender_source="no",
            input_faces_index="0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99",
            source_faces_index="0",
            console_log_level=2,
            input_image=get_value_at_index(resized_input_image, 0),
            face_model=get_value_at_index(FACE_MODEL, 0),
        )

        upscaled_image = imageupscalewithmodel.upscale(
            upscale_model=get_value_at_index(UPSCALE_MODEL, 0),
            image=get_value_at_index(swapped_image, 0),
        )

        final_image = imageresize.execute(
            width=original_width,
            height=original_height,
            interpolation="lanczos",
            method="keep proportion",
            condition="downscale if bigger",
            multiple_of=0,
            image=get_value_at_index(upscaled_image, 0),
        )

        img = Image.fromarray(
            np.clip(
                (255.0 * get_value_at_index(final_image, 0)[0].cpu().numpy()), 0, 255
            ).astype(np.uint8)
        )
        outpath = f"advance-blurred-{os.urandom(16).hex()}.jpg"
        img.save(outpath, quality=80, dpi=(72, 72))

        # Clean up the /tmp directory
        clear_tmp_directory()

        # Log the time taken for the process
        end_time = time.time()
        elapsed_time = end_time - start_time
        print(f"Processing time: {elapsed_time:.2f} seconds")

        return outpath


if __name__ == "__main__":
    # Updated, more flexible CSS
    css_code = ""

    with gr.Blocks(css=css_code, theme=gr.themes.Base()) as app:
        gr.Markdown("# 🥸 Advance Blur")

        with gr.Accordion("More info", open=False):
            gr.Markdown(
                """
                **Advance Blur** is an anonymization tool that leverages a sophisticated
                technique known as "Vance Blurring" to enhance privacy for your images.

                **Features:**
                - **Blur Faces**: Automatically detects and replaces faces with the image of the ideal American male.
                - **Enhance Privacy:** Removes sensitive information from images (GPS, EXIF, etc.)
                - **Safe and secure:** No data is stored long-term or shared with others. System is fully reset on a regular basis.

                **Disclaimer:**
                Advance Blur is intended for entertainment purposes only. Any resemblance
                to actual persons is entirely coincidental, karmic, and comedic (as a decent parody
                should).

                Advance Blur only seeks to perfect images using the depiction of the ideal American male.

                **Instructions:**
                1. Upload your image.
                2. Click the "Submit" button to apply "Vance Blurring" to your image.
                3. Download the blurred image by long-clicking on it to Copy, or tap down-arrow to Save.
                4. Share the image with your friends and family, feeling confident in your privacy!

                **Tips:**
                - For best results, use high-quality images at medium-ranges.
                - Works best when faces are front-facing and well-lit.
                - Always check the final image before sharing.
                """
            )

        with gr.Row(max_height=500):
            gr.Image(
                value="before.jpg",
                label="Before",
                show_label=True,
                interactive=False,
            )
            gr.Image(
                value="after.jpg",
                label="After",
                show_label=True,
                interactive=False,
            )

        with gr.Row():
            with gr.Column():
                input_image = gr.Image(
                    type="filepath",
                    label="Upload Your Image",
                    elem_id="fixed-image-size",
                    show_label=True,
                )
                submit_btn = gr.Button("Submit", variant="primary")

            with gr.Column():
                output_image = gr.Image(
                    label="\"Vance Blurred\" Result",
                    elem_id="fixed-image-size",
                    show_label=True,
                )

            # Trigger your blur function
            submit_btn.click(fn=advance_blur, inputs=[input_image], outputs=[output_image])

    # Launch the app
    app.launch(share=True)