Spaces:
Runtime error
Runtime error
abhi001vj
commited on
Commit
Β·
637af2f
1
Parent(s):
31e192b
added the fixes for local
Browse files- .env +2 -2
- Licenseplate_model.pt +0 -3
- app.py +5 -350
- best.pt +0 -3
- best_classifer_model.pt +0 -3
- deploy.prototxt +0 -1789
- download_models.py +6 -46
- res10_300x300_ssd_iter_140000_fp16.caffemodel +0 -3
.env
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
-
PINECONE_KEY=
|
2 |
-
PINECONE_ENV=
|
|
|
1 |
+
PINECONE_KEY=
|
2 |
+
PINECONE_ENV=
|
Licenseplate_model.pt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:3c9a080781aa7ff722968c944a702983af8a452753edd5ba20719d42349ec7bd
|
3 |
-
size 71780037
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -1,5 +1,3 @@
|
|
1 |
-
import cv2
|
2 |
-
import numpy as np
|
3 |
import argparse
|
4 |
import base64
|
5 |
import io
|
@@ -9,8 +7,7 @@ import sys
|
|
9 |
import traceback
|
10 |
import uuid
|
11 |
from typing import List, Optional
|
12 |
-
|
13 |
-
import traceback
|
14 |
import cv2
|
15 |
import numpy as np
|
16 |
import pandas as pd
|
@@ -21,31 +18,20 @@ import torch
|
|
21 |
import uvicorn
|
22 |
from dotenv import load_dotenv
|
23 |
from fastapi import FastAPI, File, Form, HTTPException, UploadFile
|
24 |
-
from PIL import Image
|
25 |
from pydantic import BaseModel
|
26 |
from sentence_transformers import SentenceTransformer, util
|
27 |
-
from transformers import (
|
28 |
-
AutoFeatureExtractor,
|
29 |
-
AutoModel,
|
30 |
-
DonutProcessor,
|
31 |
-
VisionEncoderDecoderModel,
|
32 |
-
)
|
33 |
|
34 |
load_dotenv()
|
35 |
pinecone.init(api_key=os.getenv("PINECONE_KEY"), environment=os.getenv("PINECONE_ENV"))
|
36 |
-
|
37 |
-
CLASSIFICATION_URL = "/object-classification/"
|
38 |
-
QUALITY_ASSESSMENT_URL = "/quality-assessment/"
|
39 |
-
FACE_URL = "/face-anonymization/"
|
40 |
-
LICENCE_URL = "/licenceplate-anonymization/"
|
41 |
-
DOCUMENT_QA = "/document-qa/"
|
42 |
IMAGE_SIMILARITY_DEMO = "/find-similar-image/"
|
43 |
IMAGE_SIMILARITY_PINECONE_DEMO = "/find-similar-image-pinecone/"
|
44 |
INDEX_NAME = "imagesearch-demo"
|
45 |
INDEX_DIMENSION = 512
|
46 |
TMP_DIR = "tmp"
|
47 |
|
48 |
-
|
49 |
|
50 |
def enhance_image(pil_image):
|
51 |
# Convert PIL Image to OpenCV format
|
@@ -99,353 +85,22 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
99 |
|
100 |
os.makedirs(TMP_DIR, exist_ok=True)
|
101 |
|
102 |
-
licence_model = torch.hub.load(
|
103 |
-
"ultralytics/yolov5", "custom", path="Licenseplate_model.pt", device="cpu", force_reload=True
|
104 |
-
)
|
105 |
-
licence_model.cpu()
|
106 |
-
|
107 |
-
detector = cv2.dnn.DetectionModel(
|
108 |
-
"res10_300x300_ssd_iter_140000_fp16.caffemodel", "deploy.prototxt"
|
109 |
-
)
|
110 |
-
|
111 |
-
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
|
112 |
-
doc_qa_model = VisionEncoderDecoderModel.from_pretrained(
|
113 |
-
"naver-clova-ix/donut-base-finetuned-docvqa"
|
114 |
-
)
|
115 |
|
116 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
117 |
-
doc_qa_model.to(device)
|
118 |
|
119 |
|
120 |
os.makedirs(TMP_DIR, exist_ok=True)
|
121 |
|
122 |
-
model = torch.hub.load(
|
123 |
-
"ultralytics/yolov5", "custom", path="best.pt", device="cpu", force_reload=True
|
124 |
-
)
|
125 |
-
model.cpu()
|
126 |
-
|
127 |
-
classes = [
|
128 |
-
"gas-distribution-meter",
|
129 |
-
"gas-distribution-piping",
|
130 |
-
"gas-distribution-regulator",
|
131 |
-
"gas-distribution-valve",
|
132 |
-
]
|
133 |
-
|
134 |
-
class_to_idx = {
|
135 |
-
"gas-distribution-meter": 0,
|
136 |
-
"gas-distribution-piping": 1,
|
137 |
-
"gas-distribution-regulator": 2,
|
138 |
-
"gas-distribution-valve": 3,
|
139 |
-
}
|
140 |
-
|
141 |
-
idx_to_classes = {v: k for k, v in class_to_idx.items()}
|
142 |
-
modelname = "resnet50d"
|
143 |
-
model_weights = "best_classifer_model.pt"
|
144 |
-
num_classes = len(classes)
|
145 |
-
|
146 |
-
classifier_model = timm.create_model(
|
147 |
-
"resnet50d", pretrained=True, num_classes=num_classes, drop_path_rate=0.05
|
148 |
-
)
|
149 |
-
classifier_model.load_state_dict(
|
150 |
-
torch.load(model_weights, map_location=torch.device("cpu"))["model_state_dict"]
|
151 |
-
)
|
152 |
-
|
153 |
-
musiq_metric = pyiqa.create_metric("musiq-koniq", device=torch.device("cpu"))
|
154 |
-
image_sim_model = SentenceTransformer("clip-ViT-B-32")
|
155 |
-
|
156 |
|
157 |
-
# model_ckpt = "nateraw/vit-base-beans"
|
158 |
-
# extractor = AutoFeatureExtractor.from_pretrained(model_ckpt)
|
159 |
-
# image_sim_model = AutoModel.from_pretrained(model_ckpt)
|
160 |
|
161 |
|
162 |
app = FastAPI(title="CV Demos")
|
163 |
|
164 |
-
# Define the Response
|
165 |
-
class Prediction(BaseModel):
|
166 |
-
filename: str
|
167 |
-
contenttype: str
|
168 |
-
prediction: List[float] = []
|
169 |
-
|
170 |
-
|
171 |
-
# define response
|
172 |
-
@app.get("/")
|
173 |
-
def root_route():
|
174 |
-
return {"error": f"Use GET {DETECTION_URL} instead of the root route!"}
|
175 |
-
|
176 |
-
|
177 |
-
@app.post(
|
178 |
-
DETECTION_URL,
|
179 |
-
)
|
180 |
-
async def predict(file: UploadFile = File(...), quality_check: bool = False):
|
181 |
-
try:
|
182 |
-
extension = file.filename.split(".")[-1] in ("jpg", "jpeg", "png")
|
183 |
-
if not extension:
|
184 |
-
return "Image must be jpg or png format!"
|
185 |
-
# read image contain
|
186 |
-
contents = await file.read()
|
187 |
-
pil_image = Image.open(io.BytesIO(contents))
|
188 |
-
if quality_check:
|
189 |
-
print("RUNNING QUALITY CEHCK BEFORE OBJEFCT DETECTION!!!")
|
190 |
-
tmp_file = f"{TMP_DIR}/tmp.png"
|
191 |
-
pil_image.save(tmp_file)
|
192 |
-
score = musiq_metric(tmp_file)
|
193 |
-
if score < 50:
|
194 |
-
return {
|
195 |
-
"Error": "Image quality is not sufficient enough to be considered for object detection"
|
196 |
-
}
|
197 |
-
|
198 |
-
results = model(pil_image, size=640) # reduce size=320 for faster inference
|
199 |
-
return results.pandas().xyxy[0].to_json(orient="records")
|
200 |
-
except:
|
201 |
-
e = sys.exc_info()[1]
|
202 |
-
raise HTTPException(status_code=500, detail=str(e))
|
203 |
-
|
204 |
-
|
205 |
-
@app.post(CLASSIFICATION_URL)
|
206 |
-
async def classify(file: UploadFile = File(...)):
|
207 |
-
try:
|
208 |
-
extension = file.filename.split(".")[-1] in ("jpg", "jpeg", "png")
|
209 |
-
if not extension:
|
210 |
-
return "Image must be jpg or png format!"
|
211 |
-
# read image contain
|
212 |
-
contents = await file.read()
|
213 |
-
pil_image = Image.open(io.BytesIO(contents))
|
214 |
-
data_mean = (0.485, 0.456, 0.406)
|
215 |
-
data_std = (0.229, 0.224, 0.225)
|
216 |
-
image_size = (224, 224)
|
217 |
-
eval_transforms = timm.data.create_transform(
|
218 |
-
input_size=image_size, mean=data_mean, std=data_std
|
219 |
-
)
|
220 |
-
eval_transforms(pil_image).unsqueeze(dim=0).shape
|
221 |
-
classifier_model.eval()
|
222 |
-
print("RUNNING Image Classification!!!")
|
223 |
-
max_class_idx = np.argmax(
|
224 |
-
classifier_model(eval_transforms(pil_image).unsqueeze(dim=0)).detach().numpy()
|
225 |
-
)
|
226 |
-
predicted_class = idx_to_classes[max_class_idx]
|
227 |
-
print(f"Predicted Class idx: {max_class_idx} with name : {predicted_class}")
|
228 |
-
return {"object": predicted_class}
|
229 |
-
|
230 |
-
except:
|
231 |
-
e = sys.exc_info()[1]
|
232 |
-
raise HTTPException(status_code=500, detail=str(e))
|
233 |
-
|
234 |
-
|
235 |
-
@app.post(QUALITY_ASSESSMENT_URL)
|
236 |
-
async def quality_check(file: UploadFile = File(...)):
|
237 |
-
try:
|
238 |
-
extension = file.filename.split(".")[-1] in ("jpg", "jpeg", "png")
|
239 |
-
if not extension:
|
240 |
-
return "Image must be jpg or png format!"
|
241 |
-
# read image contain
|
242 |
-
contents = await file.read()
|
243 |
-
pil_image = Image.open(io.BytesIO(contents))
|
244 |
-
tmp_file = f"{TMP_DIR}/tmp.png"
|
245 |
-
pil_image.save(tmp_file)
|
246 |
-
score = musiq_metric(tmp_file).detach().numpy().tolist()
|
247 |
-
return {"score": score}
|
248 |
-
|
249 |
-
except:
|
250 |
-
e = sys.exc_info()[1]
|
251 |
-
raise HTTPException(status_code=500, detail=str(e))
|
252 |
-
|
253 |
-
|
254 |
-
def anonymize_simple(image, factor=3.0):
|
255 |
-
# automatically determine the size of the blurring kernel based
|
256 |
-
# on the spatial dimensions of the input image
|
257 |
-
(h, w) = image.shape[:2]
|
258 |
-
kW = int(w / factor)
|
259 |
-
kH = int(h / factor)
|
260 |
-
# ensure the width of the kernel is odd
|
261 |
-
if kW % 2 == 0:
|
262 |
-
kW -= 1
|
263 |
-
# ensure the height of the kernel is odd
|
264 |
-
if kH % 2 == 0:
|
265 |
-
kH -= 1
|
266 |
-
# apply a Gaussian blur to the input image using our computed
|
267 |
-
# kernel size
|
268 |
-
return cv2.GaussianBlur(image, (kW, kH), 0)
|
269 |
-
|
270 |
-
|
271 |
-
def anonymize_pixelate(image, blocks=3):
|
272 |
-
# divide the input image into NxN blocks
|
273 |
-
(h, w) = image.shape[:2]
|
274 |
-
xSteps = np.linspace(0, w, blocks + 1, dtype="int")
|
275 |
-
ySteps = np.linspace(0, h, blocks + 1, dtype="int")
|
276 |
-
# loop over the blocks in both the x and y direction
|
277 |
-
for i in range(1, len(ySteps)):
|
278 |
-
for j in range(1, len(xSteps)):
|
279 |
-
# compute the starting and ending (x, y)-coordinates
|
280 |
-
# for the current block
|
281 |
-
startX = xSteps[j - 1]
|
282 |
-
startY = ySteps[i - 1]
|
283 |
-
endX = xSteps[j]
|
284 |
-
endY = ySteps[i]
|
285 |
-
# extract the ROI using NumPy array slicing, compute the
|
286 |
-
# mean of the ROI, and then draw a rectangle with the
|
287 |
-
# mean RGB values over the ROI in the original image
|
288 |
-
roi = image[startY:endY, startX:endX]
|
289 |
-
(B, G, R) = [int(x) for x in cv2.mean(roi)[:3]]
|
290 |
-
cv2.rectangle(image, (startX, startY), (endX, endY), (B, G, R), -1)
|
291 |
-
# return the pixelated blurred image
|
292 |
-
return image
|
293 |
-
|
294 |
|
295 |
# define response
|
296 |
@app.get("/")
|
297 |
def root_route():
|
298 |
-
return {"error": f"Use GET {
|
299 |
-
|
300 |
-
|
301 |
-
@app.post(
|
302 |
-
FACE_URL,
|
303 |
-
)
|
304 |
-
async def face_anonymize(
|
305 |
-
file: UploadFile = File(...), blur_type="simple", quality_check: bool = False
|
306 |
-
):
|
307 |
-
"""
|
308 |
-
https://pyimagesearch.com/2020/04/06/blur-and-anonymize-faces-with-opencv-and-python/
|
309 |
-
"""
|
310 |
-
try:
|
311 |
-
extension = file.filename.split(".")[-1] in ("jpg", "jpeg", "png")
|
312 |
-
if not extension:
|
313 |
-
return "Image must be jpg or png format!"
|
314 |
-
# read image contain
|
315 |
-
contents = await file.read()
|
316 |
-
pil_image = Image.open(io.BytesIO(contents)).convert("RGB")
|
317 |
-
detector = cv2.dnn.DetectionModel(
|
318 |
-
"res10_300x300_ssd_iter_140000_fp16.caffemodel", "deploy.prototxt"
|
319 |
-
)
|
320 |
-
open_cv_image = np.array(pil_image)
|
321 |
-
# Convert RGB to BGR
|
322 |
-
open_cv_image = open_cv_image[:, :, ::-1].copy()
|
323 |
-
(h, w) = open_cv_image.shape[:2]
|
324 |
-
# Getting the detections
|
325 |
-
detections = detector.detect(open_cv_image)
|
326 |
-
if len(detections[2]) > 0:
|
327 |
-
for face in detections[2]:
|
328 |
-
(x, y, w, h) = face.astype("int")
|
329 |
-
# extract the face ROI
|
330 |
-
|
331 |
-
face = open_cv_image[y : y + h, x : x + w]
|
332 |
-
if blur_type == "simple":
|
333 |
-
face = anonymize_simple(face)
|
334 |
-
else:
|
335 |
-
face = anonymize_pixelate(face)
|
336 |
-
open_cv_image[y : y + h, x : x + w] = face
|
337 |
-
|
338 |
-
_, encoded_img = cv2.imencode(".PNG", open_cv_image)
|
339 |
-
|
340 |
-
encoded_img = base64.b64encode(encoded_img)
|
341 |
-
return {
|
342 |
-
"filename": file.filename,
|
343 |
-
"dimensions": str(open_cv_image.shape),
|
344 |
-
"encoded_img": encoded_img,
|
345 |
-
}
|
346 |
-
except:
|
347 |
-
e = sys.exc_info()[1]
|
348 |
-
print(traceback.format_exc())
|
349 |
-
raise HTTPException(status_code=500, detail=str(e))
|
350 |
-
|
351 |
-
|
352 |
-
@app.post(LICENCE_URL)
|
353 |
-
async def licence_anonymize(file: UploadFile = File(...), blur_type="simple"):
|
354 |
-
"""https://www.kaggle.com/code/gowrishankarp/license-plate-detection-yolov5-pytesseract/notebook#Visualize"""
|
355 |
-
try:
|
356 |
-
extension = file.filename.split(".")[-1] in ("jpg", "jpeg", "png")
|
357 |
-
if not extension:
|
358 |
-
return "Image must be jpg or png format!"
|
359 |
-
# read image contain
|
360 |
-
contents = await file.read()
|
361 |
-
pil_image = Image.open(io.BytesIO(contents))
|
362 |
-
results = licence_model(pil_image, size=640) # reduce size=320 for faster inference
|
363 |
-
pil_image = pil_image.convert("RGB")
|
364 |
-
open_cv_image = np.array(pil_image)
|
365 |
-
open_cv_image = open_cv_image[:, :, ::-1].copy()
|
366 |
-
df = results.pandas().xyxy[0]
|
367 |
-
for i, row in df.iterrows():
|
368 |
-
xmin = int(row["xmin"])
|
369 |
-
ymin = int(row["ymin"])
|
370 |
-
xmax = int(row["xmax"])
|
371 |
-
ymax = int(row["ymax"])
|
372 |
-
licence = open_cv_image[ymin:ymax, xmin:xmax]
|
373 |
-
if blur_type == "simple":
|
374 |
-
licence = anonymize_simple(licence)
|
375 |
-
else:
|
376 |
-
licence = anonymize_pixelate(licence)
|
377 |
-
open_cv_image[ymin:ymax, xmin:xmax] = licence
|
378 |
-
|
379 |
-
_, encoded_img = cv2.imencode(".PNG", open_cv_image)
|
380 |
-
|
381 |
-
encoded_img = base64.b64encode(encoded_img)
|
382 |
-
return {
|
383 |
-
"filename": file.filename,
|
384 |
-
"dimensions": str(open_cv_image.shape),
|
385 |
-
"encoded_img": encoded_img,
|
386 |
-
}
|
387 |
-
|
388 |
-
except:
|
389 |
-
e = sys.exc_info()[1]
|
390 |
-
raise HTTPException(status_code=500, detail=str(e))
|
391 |
-
|
392 |
-
|
393 |
-
def process_document(image, question):
|
394 |
-
# prepare encoder inputs
|
395 |
-
pixel_values = processor(image, return_tensors="pt").pixel_values
|
396 |
-
|
397 |
-
# prepare decoder inputs
|
398 |
-
task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
|
399 |
-
prompt = task_prompt.replace("{user_input}", question)
|
400 |
-
decoder_input_ids = processor.tokenizer(
|
401 |
-
prompt, add_special_tokens=False, return_tensors="pt"
|
402 |
-
).input_ids
|
403 |
-
|
404 |
-
# generate answer
|
405 |
-
outputs = doc_qa_model.generate(
|
406 |
-
pixel_values.to(device),
|
407 |
-
decoder_input_ids=decoder_input_ids.to(device),
|
408 |
-
max_length=doc_qa_model.decoder.config.max_position_embeddings,
|
409 |
-
early_stopping=True,
|
410 |
-
pad_token_id=processor.tokenizer.pad_token_id,
|
411 |
-
eos_token_id=processor.tokenizer.eos_token_id,
|
412 |
-
use_cache=True,
|
413 |
-
num_beams=1,
|
414 |
-
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
415 |
-
return_dict_in_generate=True,
|
416 |
-
)
|
417 |
-
|
418 |
-
# postprocess
|
419 |
-
sequence = processor.batch_decode(outputs.sequences)[0]
|
420 |
-
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(
|
421 |
-
processor.tokenizer.pad_token, ""
|
422 |
-
)
|
423 |
-
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
424 |
-
|
425 |
-
return processor.token2json(sequence)
|
426 |
-
|
427 |
-
|
428 |
-
@app.post(DOCUMENT_QA)
|
429 |
-
async def document_qa(question: str = Form(...), file: UploadFile = File(...)):
|
430 |
-
|
431 |
-
try:
|
432 |
-
extension = file.filename.split(".")[-1] in ("jpg", "jpeg", "png")
|
433 |
-
if not extension:
|
434 |
-
return "Image must be jpg or png format!"
|
435 |
-
# read image contain
|
436 |
-
contents = await file.read()
|
437 |
-
pil_image = Image.open(io.BytesIO(contents))
|
438 |
-
# tmp_file = f"{TMP_DIR}/tmp.png"
|
439 |
-
# pil_image.save(tmp_file)
|
440 |
-
# answer_git_large = generate_answer_git(git_processor_large, git_model_large, image, question)
|
441 |
-
|
442 |
-
answer = process_document(pil_image, question)["answer"]
|
443 |
-
|
444 |
-
return {"answer": answer}
|
445 |
-
|
446 |
-
except:
|
447 |
-
e = sys.exc_info()[1]
|
448 |
-
raise HTTPException(status_code=500, detail=str(e))
|
449 |
|
450 |
|
451 |
@app.post(IMAGE_SIMILARITY_DEMO)
|
|
|
|
|
|
|
1 |
import argparse
|
2 |
import base64
|
3 |
import io
|
|
|
7 |
import traceback
|
8 |
import uuid
|
9 |
from typing import List, Optional
|
10 |
+
|
|
|
11 |
import cv2
|
12 |
import numpy as np
|
13 |
import pandas as pd
|
|
|
18 |
import uvicorn
|
19 |
from dotenv import load_dotenv
|
20 |
from fastapi import FastAPI, File, Form, HTTPException, UploadFile
|
21 |
+
from PIL import Image, ImageEnhance
|
22 |
from pydantic import BaseModel
|
23 |
from sentence_transformers import SentenceTransformer, util
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
load_dotenv()
|
26 |
pinecone.init(api_key=os.getenv("PINECONE_KEY"), environment=os.getenv("PINECONE_ENV"))
|
27 |
+
|
|
|
|
|
|
|
|
|
|
|
28 |
IMAGE_SIMILARITY_DEMO = "/find-similar-image/"
|
29 |
IMAGE_SIMILARITY_PINECONE_DEMO = "/find-similar-image-pinecone/"
|
30 |
INDEX_NAME = "imagesearch-demo"
|
31 |
INDEX_DIMENSION = 512
|
32 |
TMP_DIR = "tmp"
|
33 |
|
34 |
+
image_sim_model = SentenceTransformer("clip-ViT-B-32")
|
35 |
|
36 |
def enhance_image(pil_image):
|
37 |
# Convert PIL Image to OpenCV format
|
|
|
85 |
|
86 |
os.makedirs(TMP_DIR, exist_ok=True)
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
90 |
|
91 |
|
92 |
os.makedirs(TMP_DIR, exist_ok=True)
|
93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
|
|
|
|
|
|
95 |
|
96 |
|
97 |
app = FastAPI(title="CV Demos")
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
# define response
|
101 |
@app.get("/")
|
102 |
def root_route():
|
103 |
+
return {"error": f"Use GET {IMAGE_SIMILARITY_PINECONE_DEMO} instead of the root route!"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
|
106 |
@app.post(IMAGE_SIMILARITY_DEMO)
|
best.pt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:c8faa2592e29248e58453cb031e536bd96f2929d9768bbd3c78ea54944f045db
|
3 |
-
size 14447677
|
|
|
|
|
|
|
|
best_classifer_model.pt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:4e5c0f63fbe8f8349ceda742cc6c7d333c1a2ae443b6f7aa1d100859d59322a7
|
3 |
-
size 377080432
|
|
|
|
|
|
|
|
deploy.prototxt
DELETED
@@ -1,1789 +0,0 @@
|
|
1 |
-
input: "data"
|
2 |
-
input_shape {
|
3 |
-
dim: 1
|
4 |
-
dim: 3
|
5 |
-
dim: 300
|
6 |
-
dim: 300
|
7 |
-
}
|
8 |
-
|
9 |
-
layer {
|
10 |
-
name: "data_bn"
|
11 |
-
type: "BatchNorm"
|
12 |
-
bottom: "data"
|
13 |
-
top: "data_bn"
|
14 |
-
param {
|
15 |
-
lr_mult: 0.0
|
16 |
-
}
|
17 |
-
param {
|
18 |
-
lr_mult: 0.0
|
19 |
-
}
|
20 |
-
param {
|
21 |
-
lr_mult: 0.0
|
22 |
-
}
|
23 |
-
}
|
24 |
-
layer {
|
25 |
-
name: "data_scale"
|
26 |
-
type: "Scale"
|
27 |
-
bottom: "data_bn"
|
28 |
-
top: "data_bn"
|
29 |
-
param {
|
30 |
-
lr_mult: 1.0
|
31 |
-
decay_mult: 1.0
|
32 |
-
}
|
33 |
-
param {
|
34 |
-
lr_mult: 2.0
|
35 |
-
decay_mult: 1.0
|
36 |
-
}
|
37 |
-
scale_param {
|
38 |
-
bias_term: true
|
39 |
-
}
|
40 |
-
}
|
41 |
-
layer {
|
42 |
-
name: "conv1_h"
|
43 |
-
type: "Convolution"
|
44 |
-
bottom: "data_bn"
|
45 |
-
top: "conv1_h"
|
46 |
-
param {
|
47 |
-
lr_mult: 1.0
|
48 |
-
decay_mult: 1.0
|
49 |
-
}
|
50 |
-
param {
|
51 |
-
lr_mult: 2.0
|
52 |
-
decay_mult: 1.0
|
53 |
-
}
|
54 |
-
convolution_param {
|
55 |
-
num_output: 32
|
56 |
-
pad: 3
|
57 |
-
kernel_size: 7
|
58 |
-
stride: 2
|
59 |
-
weight_filler {
|
60 |
-
type: "msra"
|
61 |
-
variance_norm: FAN_OUT
|
62 |
-
}
|
63 |
-
bias_filler {
|
64 |
-
type: "constant"
|
65 |
-
value: 0.0
|
66 |
-
}
|
67 |
-
}
|
68 |
-
}
|
69 |
-
layer {
|
70 |
-
name: "conv1_bn_h"
|
71 |
-
type: "BatchNorm"
|
72 |
-
bottom: "conv1_h"
|
73 |
-
top: "conv1_h"
|
74 |
-
param {
|
75 |
-
lr_mult: 0.0
|
76 |
-
}
|
77 |
-
param {
|
78 |
-
lr_mult: 0.0
|
79 |
-
}
|
80 |
-
param {
|
81 |
-
lr_mult: 0.0
|
82 |
-
}
|
83 |
-
}
|
84 |
-
layer {
|
85 |
-
name: "conv1_scale_h"
|
86 |
-
type: "Scale"
|
87 |
-
bottom: "conv1_h"
|
88 |
-
top: "conv1_h"
|
89 |
-
param {
|
90 |
-
lr_mult: 1.0
|
91 |
-
decay_mult: 1.0
|
92 |
-
}
|
93 |
-
param {
|
94 |
-
lr_mult: 2.0
|
95 |
-
decay_mult: 1.0
|
96 |
-
}
|
97 |
-
scale_param {
|
98 |
-
bias_term: true
|
99 |
-
}
|
100 |
-
}
|
101 |
-
layer {
|
102 |
-
name: "conv1_relu"
|
103 |
-
type: "ReLU"
|
104 |
-
bottom: "conv1_h"
|
105 |
-
top: "conv1_h"
|
106 |
-
}
|
107 |
-
layer {
|
108 |
-
name: "conv1_pool"
|
109 |
-
type: "Pooling"
|
110 |
-
bottom: "conv1_h"
|
111 |
-
top: "conv1_pool"
|
112 |
-
pooling_param {
|
113 |
-
kernel_size: 3
|
114 |
-
stride: 2
|
115 |
-
}
|
116 |
-
}
|
117 |
-
layer {
|
118 |
-
name: "layer_64_1_conv1_h"
|
119 |
-
type: "Convolution"
|
120 |
-
bottom: "conv1_pool"
|
121 |
-
top: "layer_64_1_conv1_h"
|
122 |
-
param {
|
123 |
-
lr_mult: 1.0
|
124 |
-
decay_mult: 1.0
|
125 |
-
}
|
126 |
-
convolution_param {
|
127 |
-
num_output: 32
|
128 |
-
bias_term: false
|
129 |
-
pad: 1
|
130 |
-
kernel_size: 3
|
131 |
-
stride: 1
|
132 |
-
weight_filler {
|
133 |
-
type: "msra"
|
134 |
-
}
|
135 |
-
bias_filler {
|
136 |
-
type: "constant"
|
137 |
-
value: 0.0
|
138 |
-
}
|
139 |
-
}
|
140 |
-
}
|
141 |
-
layer {
|
142 |
-
name: "layer_64_1_bn2_h"
|
143 |
-
type: "BatchNorm"
|
144 |
-
bottom: "layer_64_1_conv1_h"
|
145 |
-
top: "layer_64_1_conv1_h"
|
146 |
-
param {
|
147 |
-
lr_mult: 0.0
|
148 |
-
}
|
149 |
-
param {
|
150 |
-
lr_mult: 0.0
|
151 |
-
}
|
152 |
-
param {
|
153 |
-
lr_mult: 0.0
|
154 |
-
}
|
155 |
-
}
|
156 |
-
layer {
|
157 |
-
name: "layer_64_1_scale2_h"
|
158 |
-
type: "Scale"
|
159 |
-
bottom: "layer_64_1_conv1_h"
|
160 |
-
top: "layer_64_1_conv1_h"
|
161 |
-
param {
|
162 |
-
lr_mult: 1.0
|
163 |
-
decay_mult: 1.0
|
164 |
-
}
|
165 |
-
param {
|
166 |
-
lr_mult: 2.0
|
167 |
-
decay_mult: 1.0
|
168 |
-
}
|
169 |
-
scale_param {
|
170 |
-
bias_term: true
|
171 |
-
}
|
172 |
-
}
|
173 |
-
layer {
|
174 |
-
name: "layer_64_1_relu2"
|
175 |
-
type: "ReLU"
|
176 |
-
bottom: "layer_64_1_conv1_h"
|
177 |
-
top: "layer_64_1_conv1_h"
|
178 |
-
}
|
179 |
-
layer {
|
180 |
-
name: "layer_64_1_conv2_h"
|
181 |
-
type: "Convolution"
|
182 |
-
bottom: "layer_64_1_conv1_h"
|
183 |
-
top: "layer_64_1_conv2_h"
|
184 |
-
param {
|
185 |
-
lr_mult: 1.0
|
186 |
-
decay_mult: 1.0
|
187 |
-
}
|
188 |
-
convolution_param {
|
189 |
-
num_output: 32
|
190 |
-
bias_term: false
|
191 |
-
pad: 1
|
192 |
-
kernel_size: 3
|
193 |
-
stride: 1
|
194 |
-
weight_filler {
|
195 |
-
type: "msra"
|
196 |
-
}
|
197 |
-
bias_filler {
|
198 |
-
type: "constant"
|
199 |
-
value: 0.0
|
200 |
-
}
|
201 |
-
}
|
202 |
-
}
|
203 |
-
layer {
|
204 |
-
name: "layer_64_1_sum"
|
205 |
-
type: "Eltwise"
|
206 |
-
bottom: "layer_64_1_conv2_h"
|
207 |
-
bottom: "conv1_pool"
|
208 |
-
top: "layer_64_1_sum"
|
209 |
-
}
|
210 |
-
layer {
|
211 |
-
name: "layer_128_1_bn1_h"
|
212 |
-
type: "BatchNorm"
|
213 |
-
bottom: "layer_64_1_sum"
|
214 |
-
top: "layer_128_1_bn1_h"
|
215 |
-
param {
|
216 |
-
lr_mult: 0.0
|
217 |
-
}
|
218 |
-
param {
|
219 |
-
lr_mult: 0.0
|
220 |
-
}
|
221 |
-
param {
|
222 |
-
lr_mult: 0.0
|
223 |
-
}
|
224 |
-
}
|
225 |
-
layer {
|
226 |
-
name: "layer_128_1_scale1_h"
|
227 |
-
type: "Scale"
|
228 |
-
bottom: "layer_128_1_bn1_h"
|
229 |
-
top: "layer_128_1_bn1_h"
|
230 |
-
param {
|
231 |
-
lr_mult: 1.0
|
232 |
-
decay_mult: 1.0
|
233 |
-
}
|
234 |
-
param {
|
235 |
-
lr_mult: 2.0
|
236 |
-
decay_mult: 1.0
|
237 |
-
}
|
238 |
-
scale_param {
|
239 |
-
bias_term: true
|
240 |
-
}
|
241 |
-
}
|
242 |
-
layer {
|
243 |
-
name: "layer_128_1_relu1"
|
244 |
-
type: "ReLU"
|
245 |
-
bottom: "layer_128_1_bn1_h"
|
246 |
-
top: "layer_128_1_bn1_h"
|
247 |
-
}
|
248 |
-
layer {
|
249 |
-
name: "layer_128_1_conv1_h"
|
250 |
-
type: "Convolution"
|
251 |
-
bottom: "layer_128_1_bn1_h"
|
252 |
-
top: "layer_128_1_conv1_h"
|
253 |
-
param {
|
254 |
-
lr_mult: 1.0
|
255 |
-
decay_mult: 1.0
|
256 |
-
}
|
257 |
-
convolution_param {
|
258 |
-
num_output: 128
|
259 |
-
bias_term: false
|
260 |
-
pad: 1
|
261 |
-
kernel_size: 3
|
262 |
-
stride: 2
|
263 |
-
weight_filler {
|
264 |
-
type: "msra"
|
265 |
-
}
|
266 |
-
bias_filler {
|
267 |
-
type: "constant"
|
268 |
-
value: 0.0
|
269 |
-
}
|
270 |
-
}
|
271 |
-
}
|
272 |
-
layer {
|
273 |
-
name: "layer_128_1_bn2"
|
274 |
-
type: "BatchNorm"
|
275 |
-
bottom: "layer_128_1_conv1_h"
|
276 |
-
top: "layer_128_1_conv1_h"
|
277 |
-
param {
|
278 |
-
lr_mult: 0.0
|
279 |
-
}
|
280 |
-
param {
|
281 |
-
lr_mult: 0.0
|
282 |
-
}
|
283 |
-
param {
|
284 |
-
lr_mult: 0.0
|
285 |
-
}
|
286 |
-
}
|
287 |
-
layer {
|
288 |
-
name: "layer_128_1_scale2"
|
289 |
-
type: "Scale"
|
290 |
-
bottom: "layer_128_1_conv1_h"
|
291 |
-
top: "layer_128_1_conv1_h"
|
292 |
-
param {
|
293 |
-
lr_mult: 1.0
|
294 |
-
decay_mult: 1.0
|
295 |
-
}
|
296 |
-
param {
|
297 |
-
lr_mult: 2.0
|
298 |
-
decay_mult: 1.0
|
299 |
-
}
|
300 |
-
scale_param {
|
301 |
-
bias_term: true
|
302 |
-
}
|
303 |
-
}
|
304 |
-
layer {
|
305 |
-
name: "layer_128_1_relu2"
|
306 |
-
type: "ReLU"
|
307 |
-
bottom: "layer_128_1_conv1_h"
|
308 |
-
top: "layer_128_1_conv1_h"
|
309 |
-
}
|
310 |
-
layer {
|
311 |
-
name: "layer_128_1_conv2"
|
312 |
-
type: "Convolution"
|
313 |
-
bottom: "layer_128_1_conv1_h"
|
314 |
-
top: "layer_128_1_conv2"
|
315 |
-
param {
|
316 |
-
lr_mult: 1.0
|
317 |
-
decay_mult: 1.0
|
318 |
-
}
|
319 |
-
convolution_param {
|
320 |
-
num_output: 128
|
321 |
-
bias_term: false
|
322 |
-
pad: 1
|
323 |
-
kernel_size: 3
|
324 |
-
stride: 1
|
325 |
-
weight_filler {
|
326 |
-
type: "msra"
|
327 |
-
}
|
328 |
-
bias_filler {
|
329 |
-
type: "constant"
|
330 |
-
value: 0.0
|
331 |
-
}
|
332 |
-
}
|
333 |
-
}
|
334 |
-
layer {
|
335 |
-
name: "layer_128_1_conv_expand_h"
|
336 |
-
type: "Convolution"
|
337 |
-
bottom: "layer_128_1_bn1_h"
|
338 |
-
top: "layer_128_1_conv_expand_h"
|
339 |
-
param {
|
340 |
-
lr_mult: 1.0
|
341 |
-
decay_mult: 1.0
|
342 |
-
}
|
343 |
-
convolution_param {
|
344 |
-
num_output: 128
|
345 |
-
bias_term: false
|
346 |
-
pad: 0
|
347 |
-
kernel_size: 1
|
348 |
-
stride: 2
|
349 |
-
weight_filler {
|
350 |
-
type: "msra"
|
351 |
-
}
|
352 |
-
bias_filler {
|
353 |
-
type: "constant"
|
354 |
-
value: 0.0
|
355 |
-
}
|
356 |
-
}
|
357 |
-
}
|
358 |
-
layer {
|
359 |
-
name: "layer_128_1_sum"
|
360 |
-
type: "Eltwise"
|
361 |
-
bottom: "layer_128_1_conv2"
|
362 |
-
bottom: "layer_128_1_conv_expand_h"
|
363 |
-
top: "layer_128_1_sum"
|
364 |
-
}
|
365 |
-
layer {
|
366 |
-
name: "layer_256_1_bn1"
|
367 |
-
type: "BatchNorm"
|
368 |
-
bottom: "layer_128_1_sum"
|
369 |
-
top: "layer_256_1_bn1"
|
370 |
-
param {
|
371 |
-
lr_mult: 0.0
|
372 |
-
}
|
373 |
-
param {
|
374 |
-
lr_mult: 0.0
|
375 |
-
}
|
376 |
-
param {
|
377 |
-
lr_mult: 0.0
|
378 |
-
}
|
379 |
-
}
|
380 |
-
layer {
|
381 |
-
name: "layer_256_1_scale1"
|
382 |
-
type: "Scale"
|
383 |
-
bottom: "layer_256_1_bn1"
|
384 |
-
top: "layer_256_1_bn1"
|
385 |
-
param {
|
386 |
-
lr_mult: 1.0
|
387 |
-
decay_mult: 1.0
|
388 |
-
}
|
389 |
-
param {
|
390 |
-
lr_mult: 2.0
|
391 |
-
decay_mult: 1.0
|
392 |
-
}
|
393 |
-
scale_param {
|
394 |
-
bias_term: true
|
395 |
-
}
|
396 |
-
}
|
397 |
-
layer {
|
398 |
-
name: "layer_256_1_relu1"
|
399 |
-
type: "ReLU"
|
400 |
-
bottom: "layer_256_1_bn1"
|
401 |
-
top: "layer_256_1_bn1"
|
402 |
-
}
|
403 |
-
layer {
|
404 |
-
name: "layer_256_1_conv1"
|
405 |
-
type: "Convolution"
|
406 |
-
bottom: "layer_256_1_bn1"
|
407 |
-
top: "layer_256_1_conv1"
|
408 |
-
param {
|
409 |
-
lr_mult: 1.0
|
410 |
-
decay_mult: 1.0
|
411 |
-
}
|
412 |
-
convolution_param {
|
413 |
-
num_output: 256
|
414 |
-
bias_term: false
|
415 |
-
pad: 1
|
416 |
-
kernel_size: 3
|
417 |
-
stride: 2
|
418 |
-
weight_filler {
|
419 |
-
type: "msra"
|
420 |
-
}
|
421 |
-
bias_filler {
|
422 |
-
type: "constant"
|
423 |
-
value: 0.0
|
424 |
-
}
|
425 |
-
}
|
426 |
-
}
|
427 |
-
layer {
|
428 |
-
name: "layer_256_1_bn2"
|
429 |
-
type: "BatchNorm"
|
430 |
-
bottom: "layer_256_1_conv1"
|
431 |
-
top: "layer_256_1_conv1"
|
432 |
-
param {
|
433 |
-
lr_mult: 0.0
|
434 |
-
}
|
435 |
-
param {
|
436 |
-
lr_mult: 0.0
|
437 |
-
}
|
438 |
-
param {
|
439 |
-
lr_mult: 0.0
|
440 |
-
}
|
441 |
-
}
|
442 |
-
layer {
|
443 |
-
name: "layer_256_1_scale2"
|
444 |
-
type: "Scale"
|
445 |
-
bottom: "layer_256_1_conv1"
|
446 |
-
top: "layer_256_1_conv1"
|
447 |
-
param {
|
448 |
-
lr_mult: 1.0
|
449 |
-
decay_mult: 1.0
|
450 |
-
}
|
451 |
-
param {
|
452 |
-
lr_mult: 2.0
|
453 |
-
decay_mult: 1.0
|
454 |
-
}
|
455 |
-
scale_param {
|
456 |
-
bias_term: true
|
457 |
-
}
|
458 |
-
}
|
459 |
-
layer {
|
460 |
-
name: "layer_256_1_relu2"
|
461 |
-
type: "ReLU"
|
462 |
-
bottom: "layer_256_1_conv1"
|
463 |
-
top: "layer_256_1_conv1"
|
464 |
-
}
|
465 |
-
layer {
|
466 |
-
name: "layer_256_1_conv2"
|
467 |
-
type: "Convolution"
|
468 |
-
bottom: "layer_256_1_conv1"
|
469 |
-
top: "layer_256_1_conv2"
|
470 |
-
param {
|
471 |
-
lr_mult: 1.0
|
472 |
-
decay_mult: 1.0
|
473 |
-
}
|
474 |
-
convolution_param {
|
475 |
-
num_output: 256
|
476 |
-
bias_term: false
|
477 |
-
pad: 1
|
478 |
-
kernel_size: 3
|
479 |
-
stride: 1
|
480 |
-
weight_filler {
|
481 |
-
type: "msra"
|
482 |
-
}
|
483 |
-
bias_filler {
|
484 |
-
type: "constant"
|
485 |
-
value: 0.0
|
486 |
-
}
|
487 |
-
}
|
488 |
-
}
|
489 |
-
layer {
|
490 |
-
name: "layer_256_1_conv_expand"
|
491 |
-
type: "Convolution"
|
492 |
-
bottom: "layer_256_1_bn1"
|
493 |
-
top: "layer_256_1_conv_expand"
|
494 |
-
param {
|
495 |
-
lr_mult: 1.0
|
496 |
-
decay_mult: 1.0
|
497 |
-
}
|
498 |
-
convolution_param {
|
499 |
-
num_output: 256
|
500 |
-
bias_term: false
|
501 |
-
pad: 0
|
502 |
-
kernel_size: 1
|
503 |
-
stride: 2
|
504 |
-
weight_filler {
|
505 |
-
type: "msra"
|
506 |
-
}
|
507 |
-
bias_filler {
|
508 |
-
type: "constant"
|
509 |
-
value: 0.0
|
510 |
-
}
|
511 |
-
}
|
512 |
-
}
|
513 |
-
layer {
|
514 |
-
name: "layer_256_1_sum"
|
515 |
-
type: "Eltwise"
|
516 |
-
bottom: "layer_256_1_conv2"
|
517 |
-
bottom: "layer_256_1_conv_expand"
|
518 |
-
top: "layer_256_1_sum"
|
519 |
-
}
|
520 |
-
layer {
|
521 |
-
name: "layer_512_1_bn1"
|
522 |
-
type: "BatchNorm"
|
523 |
-
bottom: "layer_256_1_sum"
|
524 |
-
top: "layer_512_1_bn1"
|
525 |
-
param {
|
526 |
-
lr_mult: 0.0
|
527 |
-
}
|
528 |
-
param {
|
529 |
-
lr_mult: 0.0
|
530 |
-
}
|
531 |
-
param {
|
532 |
-
lr_mult: 0.0
|
533 |
-
}
|
534 |
-
}
|
535 |
-
layer {
|
536 |
-
name: "layer_512_1_scale1"
|
537 |
-
type: "Scale"
|
538 |
-
bottom: "layer_512_1_bn1"
|
539 |
-
top: "layer_512_1_bn1"
|
540 |
-
param {
|
541 |
-
lr_mult: 1.0
|
542 |
-
decay_mult: 1.0
|
543 |
-
}
|
544 |
-
param {
|
545 |
-
lr_mult: 2.0
|
546 |
-
decay_mult: 1.0
|
547 |
-
}
|
548 |
-
scale_param {
|
549 |
-
bias_term: true
|
550 |
-
}
|
551 |
-
}
|
552 |
-
layer {
|
553 |
-
name: "layer_512_1_relu1"
|
554 |
-
type: "ReLU"
|
555 |
-
bottom: "layer_512_1_bn1"
|
556 |
-
top: "layer_512_1_bn1"
|
557 |
-
}
|
558 |
-
layer {
|
559 |
-
name: "layer_512_1_conv1_h"
|
560 |
-
type: "Convolution"
|
561 |
-
bottom: "layer_512_1_bn1"
|
562 |
-
top: "layer_512_1_conv1_h"
|
563 |
-
param {
|
564 |
-
lr_mult: 1.0
|
565 |
-
decay_mult: 1.0
|
566 |
-
}
|
567 |
-
convolution_param {
|
568 |
-
num_output: 128
|
569 |
-
bias_term: false
|
570 |
-
pad: 1
|
571 |
-
kernel_size: 3
|
572 |
-
stride: 1 # 2
|
573 |
-
weight_filler {
|
574 |
-
type: "msra"
|
575 |
-
}
|
576 |
-
bias_filler {
|
577 |
-
type: "constant"
|
578 |
-
value: 0.0
|
579 |
-
}
|
580 |
-
}
|
581 |
-
}
|
582 |
-
layer {
|
583 |
-
name: "layer_512_1_bn2_h"
|
584 |
-
type: "BatchNorm"
|
585 |
-
bottom: "layer_512_1_conv1_h"
|
586 |
-
top: "layer_512_1_conv1_h"
|
587 |
-
param {
|
588 |
-
lr_mult: 0.0
|
589 |
-
}
|
590 |
-
param {
|
591 |
-
lr_mult: 0.0
|
592 |
-
}
|
593 |
-
param {
|
594 |
-
lr_mult: 0.0
|
595 |
-
}
|
596 |
-
}
|
597 |
-
layer {
|
598 |
-
name: "layer_512_1_scale2_h"
|
599 |
-
type: "Scale"
|
600 |
-
bottom: "layer_512_1_conv1_h"
|
601 |
-
top: "layer_512_1_conv1_h"
|
602 |
-
param {
|
603 |
-
lr_mult: 1.0
|
604 |
-
decay_mult: 1.0
|
605 |
-
}
|
606 |
-
param {
|
607 |
-
lr_mult: 2.0
|
608 |
-
decay_mult: 1.0
|
609 |
-
}
|
610 |
-
scale_param {
|
611 |
-
bias_term: true
|
612 |
-
}
|
613 |
-
}
|
614 |
-
layer {
|
615 |
-
name: "layer_512_1_relu2"
|
616 |
-
type: "ReLU"
|
617 |
-
bottom: "layer_512_1_conv1_h"
|
618 |
-
top: "layer_512_1_conv1_h"
|
619 |
-
}
|
620 |
-
layer {
|
621 |
-
name: "layer_512_1_conv2_h"
|
622 |
-
type: "Convolution"
|
623 |
-
bottom: "layer_512_1_conv1_h"
|
624 |
-
top: "layer_512_1_conv2_h"
|
625 |
-
param {
|
626 |
-
lr_mult: 1.0
|
627 |
-
decay_mult: 1.0
|
628 |
-
}
|
629 |
-
convolution_param {
|
630 |
-
num_output: 256
|
631 |
-
bias_term: false
|
632 |
-
pad: 2 # 1
|
633 |
-
kernel_size: 3
|
634 |
-
stride: 1
|
635 |
-
dilation: 2
|
636 |
-
weight_filler {
|
637 |
-
type: "msra"
|
638 |
-
}
|
639 |
-
bias_filler {
|
640 |
-
type: "constant"
|
641 |
-
value: 0.0
|
642 |
-
}
|
643 |
-
}
|
644 |
-
}
|
645 |
-
layer {
|
646 |
-
name: "layer_512_1_conv_expand_h"
|
647 |
-
type: "Convolution"
|
648 |
-
bottom: "layer_512_1_bn1"
|
649 |
-
top: "layer_512_1_conv_expand_h"
|
650 |
-
param {
|
651 |
-
lr_mult: 1.0
|
652 |
-
decay_mult: 1.0
|
653 |
-
}
|
654 |
-
convolution_param {
|
655 |
-
num_output: 256
|
656 |
-
bias_term: false
|
657 |
-
pad: 0
|
658 |
-
kernel_size: 1
|
659 |
-
stride: 1 # 2
|
660 |
-
weight_filler {
|
661 |
-
type: "msra"
|
662 |
-
}
|
663 |
-
bias_filler {
|
664 |
-
type: "constant"
|
665 |
-
value: 0.0
|
666 |
-
}
|
667 |
-
}
|
668 |
-
}
|
669 |
-
layer {
|
670 |
-
name: "layer_512_1_sum"
|
671 |
-
type: "Eltwise"
|
672 |
-
bottom: "layer_512_1_conv2_h"
|
673 |
-
bottom: "layer_512_1_conv_expand_h"
|
674 |
-
top: "layer_512_1_sum"
|
675 |
-
}
|
676 |
-
layer {
|
677 |
-
name: "last_bn_h"
|
678 |
-
type: "BatchNorm"
|
679 |
-
bottom: "layer_512_1_sum"
|
680 |
-
top: "layer_512_1_sum"
|
681 |
-
param {
|
682 |
-
lr_mult: 0.0
|
683 |
-
}
|
684 |
-
param {
|
685 |
-
lr_mult: 0.0
|
686 |
-
}
|
687 |
-
param {
|
688 |
-
lr_mult: 0.0
|
689 |
-
}
|
690 |
-
}
|
691 |
-
layer {
|
692 |
-
name: "last_scale_h"
|
693 |
-
type: "Scale"
|
694 |
-
bottom: "layer_512_1_sum"
|
695 |
-
top: "layer_512_1_sum"
|
696 |
-
param {
|
697 |
-
lr_mult: 1.0
|
698 |
-
decay_mult: 1.0
|
699 |
-
}
|
700 |
-
param {
|
701 |
-
lr_mult: 2.0
|
702 |
-
decay_mult: 1.0
|
703 |
-
}
|
704 |
-
scale_param {
|
705 |
-
bias_term: true
|
706 |
-
}
|
707 |
-
}
|
708 |
-
layer {
|
709 |
-
name: "last_relu"
|
710 |
-
type: "ReLU"
|
711 |
-
bottom: "layer_512_1_sum"
|
712 |
-
top: "fc7"
|
713 |
-
}
|
714 |
-
|
715 |
-
layer {
|
716 |
-
name: "conv6_1_h"
|
717 |
-
type: "Convolution"
|
718 |
-
bottom: "fc7"
|
719 |
-
top: "conv6_1_h"
|
720 |
-
param {
|
721 |
-
lr_mult: 1
|
722 |
-
decay_mult: 1
|
723 |
-
}
|
724 |
-
param {
|
725 |
-
lr_mult: 2
|
726 |
-
decay_mult: 0
|
727 |
-
}
|
728 |
-
convolution_param {
|
729 |
-
num_output: 128
|
730 |
-
pad: 0
|
731 |
-
kernel_size: 1
|
732 |
-
stride: 1
|
733 |
-
weight_filler {
|
734 |
-
type: "xavier"
|
735 |
-
}
|
736 |
-
bias_filler {
|
737 |
-
type: "constant"
|
738 |
-
value: 0
|
739 |
-
}
|
740 |
-
}
|
741 |
-
}
|
742 |
-
layer {
|
743 |
-
name: "conv6_1_relu"
|
744 |
-
type: "ReLU"
|
745 |
-
bottom: "conv6_1_h"
|
746 |
-
top: "conv6_1_h"
|
747 |
-
}
|
748 |
-
layer {
|
749 |
-
name: "conv6_2_h"
|
750 |
-
type: "Convolution"
|
751 |
-
bottom: "conv6_1_h"
|
752 |
-
top: "conv6_2_h"
|
753 |
-
param {
|
754 |
-
lr_mult: 1
|
755 |
-
decay_mult: 1
|
756 |
-
}
|
757 |
-
param {
|
758 |
-
lr_mult: 2
|
759 |
-
decay_mult: 0
|
760 |
-
}
|
761 |
-
convolution_param {
|
762 |
-
num_output: 256
|
763 |
-
pad: 1
|
764 |
-
kernel_size: 3
|
765 |
-
stride: 2
|
766 |
-
weight_filler {
|
767 |
-
type: "xavier"
|
768 |
-
}
|
769 |
-
bias_filler {
|
770 |
-
type: "constant"
|
771 |
-
value: 0
|
772 |
-
}
|
773 |
-
}
|
774 |
-
}
|
775 |
-
layer {
|
776 |
-
name: "conv6_2_relu"
|
777 |
-
type: "ReLU"
|
778 |
-
bottom: "conv6_2_h"
|
779 |
-
top: "conv6_2_h"
|
780 |
-
}
|
781 |
-
layer {
|
782 |
-
name: "conv7_1_h"
|
783 |
-
type: "Convolution"
|
784 |
-
bottom: "conv6_2_h"
|
785 |
-
top: "conv7_1_h"
|
786 |
-
param {
|
787 |
-
lr_mult: 1
|
788 |
-
decay_mult: 1
|
789 |
-
}
|
790 |
-
param {
|
791 |
-
lr_mult: 2
|
792 |
-
decay_mult: 0
|
793 |
-
}
|
794 |
-
convolution_param {
|
795 |
-
num_output: 64
|
796 |
-
pad: 0
|
797 |
-
kernel_size: 1
|
798 |
-
stride: 1
|
799 |
-
weight_filler {
|
800 |
-
type: "xavier"
|
801 |
-
}
|
802 |
-
bias_filler {
|
803 |
-
type: "constant"
|
804 |
-
value: 0
|
805 |
-
}
|
806 |
-
}
|
807 |
-
}
|
808 |
-
layer {
|
809 |
-
name: "conv7_1_relu"
|
810 |
-
type: "ReLU"
|
811 |
-
bottom: "conv7_1_h"
|
812 |
-
top: "conv7_1_h"
|
813 |
-
}
|
814 |
-
layer {
|
815 |
-
name: "conv7_2_h"
|
816 |
-
type: "Convolution"
|
817 |
-
bottom: "conv7_1_h"
|
818 |
-
top: "conv7_2_h"
|
819 |
-
param {
|
820 |
-
lr_mult: 1
|
821 |
-
decay_mult: 1
|
822 |
-
}
|
823 |
-
param {
|
824 |
-
lr_mult: 2
|
825 |
-
decay_mult: 0
|
826 |
-
}
|
827 |
-
convolution_param {
|
828 |
-
num_output: 128
|
829 |
-
pad: 1
|
830 |
-
kernel_size: 3
|
831 |
-
stride: 2
|
832 |
-
weight_filler {
|
833 |
-
type: "xavier"
|
834 |
-
}
|
835 |
-
bias_filler {
|
836 |
-
type: "constant"
|
837 |
-
value: 0
|
838 |
-
}
|
839 |
-
}
|
840 |
-
}
|
841 |
-
layer {
|
842 |
-
name: "conv7_2_relu"
|
843 |
-
type: "ReLU"
|
844 |
-
bottom: "conv7_2_h"
|
845 |
-
top: "conv7_2_h"
|
846 |
-
}
|
847 |
-
layer {
|
848 |
-
name: "conv8_1_h"
|
849 |
-
type: "Convolution"
|
850 |
-
bottom: "conv7_2_h"
|
851 |
-
top: "conv8_1_h"
|
852 |
-
param {
|
853 |
-
lr_mult: 1
|
854 |
-
decay_mult: 1
|
855 |
-
}
|
856 |
-
param {
|
857 |
-
lr_mult: 2
|
858 |
-
decay_mult: 0
|
859 |
-
}
|
860 |
-
convolution_param {
|
861 |
-
num_output: 64
|
862 |
-
pad: 0
|
863 |
-
kernel_size: 1
|
864 |
-
stride: 1
|
865 |
-
weight_filler {
|
866 |
-
type: "xavier"
|
867 |
-
}
|
868 |
-
bias_filler {
|
869 |
-
type: "constant"
|
870 |
-
value: 0
|
871 |
-
}
|
872 |
-
}
|
873 |
-
}
|
874 |
-
layer {
|
875 |
-
name: "conv8_1_relu"
|
876 |
-
type: "ReLU"
|
877 |
-
bottom: "conv8_1_h"
|
878 |
-
top: "conv8_1_h"
|
879 |
-
}
|
880 |
-
layer {
|
881 |
-
name: "conv8_2_h"
|
882 |
-
type: "Convolution"
|
883 |
-
bottom: "conv8_1_h"
|
884 |
-
top: "conv8_2_h"
|
885 |
-
param {
|
886 |
-
lr_mult: 1
|
887 |
-
decay_mult: 1
|
888 |
-
}
|
889 |
-
param {
|
890 |
-
lr_mult: 2
|
891 |
-
decay_mult: 0
|
892 |
-
}
|
893 |
-
convolution_param {
|
894 |
-
num_output: 128
|
895 |
-
pad: 1
|
896 |
-
kernel_size: 3
|
897 |
-
stride: 1
|
898 |
-
weight_filler {
|
899 |
-
type: "xavier"
|
900 |
-
}
|
901 |
-
bias_filler {
|
902 |
-
type: "constant"
|
903 |
-
value: 0
|
904 |
-
}
|
905 |
-
}
|
906 |
-
}
|
907 |
-
layer {
|
908 |
-
name: "conv8_2_relu"
|
909 |
-
type: "ReLU"
|
910 |
-
bottom: "conv8_2_h"
|
911 |
-
top: "conv8_2_h"
|
912 |
-
}
|
913 |
-
layer {
|
914 |
-
name: "conv9_1_h"
|
915 |
-
type: "Convolution"
|
916 |
-
bottom: "conv8_2_h"
|
917 |
-
top: "conv9_1_h"
|
918 |
-
param {
|
919 |
-
lr_mult: 1
|
920 |
-
decay_mult: 1
|
921 |
-
}
|
922 |
-
param {
|
923 |
-
lr_mult: 2
|
924 |
-
decay_mult: 0
|
925 |
-
}
|
926 |
-
convolution_param {
|
927 |
-
num_output: 64
|
928 |
-
pad: 0
|
929 |
-
kernel_size: 1
|
930 |
-
stride: 1
|
931 |
-
weight_filler {
|
932 |
-
type: "xavier"
|
933 |
-
}
|
934 |
-
bias_filler {
|
935 |
-
type: "constant"
|
936 |
-
value: 0
|
937 |
-
}
|
938 |
-
}
|
939 |
-
}
|
940 |
-
layer {
|
941 |
-
name: "conv9_1_relu"
|
942 |
-
type: "ReLU"
|
943 |
-
bottom: "conv9_1_h"
|
944 |
-
top: "conv9_1_h"
|
945 |
-
}
|
946 |
-
layer {
|
947 |
-
name: "conv9_2_h"
|
948 |
-
type: "Convolution"
|
949 |
-
bottom: "conv9_1_h"
|
950 |
-
top: "conv9_2_h"
|
951 |
-
param {
|
952 |
-
lr_mult: 1
|
953 |
-
decay_mult: 1
|
954 |
-
}
|
955 |
-
param {
|
956 |
-
lr_mult: 2
|
957 |
-
decay_mult: 0
|
958 |
-
}
|
959 |
-
convolution_param {
|
960 |
-
num_output: 128
|
961 |
-
pad: 1
|
962 |
-
kernel_size: 3
|
963 |
-
stride: 1
|
964 |
-
weight_filler {
|
965 |
-
type: "xavier"
|
966 |
-
}
|
967 |
-
bias_filler {
|
968 |
-
type: "constant"
|
969 |
-
value: 0
|
970 |
-
}
|
971 |
-
}
|
972 |
-
}
|
973 |
-
layer {
|
974 |
-
name: "conv9_2_relu"
|
975 |
-
type: "ReLU"
|
976 |
-
bottom: "conv9_2_h"
|
977 |
-
top: "conv9_2_h"
|
978 |
-
}
|
979 |
-
layer {
|
980 |
-
name: "conv4_3_norm"
|
981 |
-
type: "Normalize"
|
982 |
-
bottom: "layer_256_1_bn1"
|
983 |
-
top: "conv4_3_norm"
|
984 |
-
norm_param {
|
985 |
-
across_spatial: false
|
986 |
-
scale_filler {
|
987 |
-
type: "constant"
|
988 |
-
value: 20
|
989 |
-
}
|
990 |
-
channel_shared: false
|
991 |
-
}
|
992 |
-
}
|
993 |
-
layer {
|
994 |
-
name: "conv4_3_norm_mbox_loc"
|
995 |
-
type: "Convolution"
|
996 |
-
bottom: "conv4_3_norm"
|
997 |
-
top: "conv4_3_norm_mbox_loc"
|
998 |
-
param {
|
999 |
-
lr_mult: 1
|
1000 |
-
decay_mult: 1
|
1001 |
-
}
|
1002 |
-
param {
|
1003 |
-
lr_mult: 2
|
1004 |
-
decay_mult: 0
|
1005 |
-
}
|
1006 |
-
convolution_param {
|
1007 |
-
num_output: 16
|
1008 |
-
pad: 1
|
1009 |
-
kernel_size: 3
|
1010 |
-
stride: 1
|
1011 |
-
weight_filler {
|
1012 |
-
type: "xavier"
|
1013 |
-
}
|
1014 |
-
bias_filler {
|
1015 |
-
type: "constant"
|
1016 |
-
value: 0
|
1017 |
-
}
|
1018 |
-
}
|
1019 |
-
}
|
1020 |
-
layer {
|
1021 |
-
name: "conv4_3_norm_mbox_loc_perm"
|
1022 |
-
type: "Permute"
|
1023 |
-
bottom: "conv4_3_norm_mbox_loc"
|
1024 |
-
top: "conv4_3_norm_mbox_loc_perm"
|
1025 |
-
permute_param {
|
1026 |
-
order: 0
|
1027 |
-
order: 2
|
1028 |
-
order: 3
|
1029 |
-
order: 1
|
1030 |
-
}
|
1031 |
-
}
|
1032 |
-
layer {
|
1033 |
-
name: "conv4_3_norm_mbox_loc_flat"
|
1034 |
-
type: "Flatten"
|
1035 |
-
bottom: "conv4_3_norm_mbox_loc_perm"
|
1036 |
-
top: "conv4_3_norm_mbox_loc_flat"
|
1037 |
-
flatten_param {
|
1038 |
-
axis: 1
|
1039 |
-
}
|
1040 |
-
}
|
1041 |
-
layer {
|
1042 |
-
name: "conv4_3_norm_mbox_conf"
|
1043 |
-
type: "Convolution"
|
1044 |
-
bottom: "conv4_3_norm"
|
1045 |
-
top: "conv4_3_norm_mbox_conf"
|
1046 |
-
param {
|
1047 |
-
lr_mult: 1
|
1048 |
-
decay_mult: 1
|
1049 |
-
}
|
1050 |
-
param {
|
1051 |
-
lr_mult: 2
|
1052 |
-
decay_mult: 0
|
1053 |
-
}
|
1054 |
-
convolution_param {
|
1055 |
-
num_output: 8 # 84
|
1056 |
-
pad: 1
|
1057 |
-
kernel_size: 3
|
1058 |
-
stride: 1
|
1059 |
-
weight_filler {
|
1060 |
-
type: "xavier"
|
1061 |
-
}
|
1062 |
-
bias_filler {
|
1063 |
-
type: "constant"
|
1064 |
-
value: 0
|
1065 |
-
}
|
1066 |
-
}
|
1067 |
-
}
|
1068 |
-
layer {
|
1069 |
-
name: "conv4_3_norm_mbox_conf_perm"
|
1070 |
-
type: "Permute"
|
1071 |
-
bottom: "conv4_3_norm_mbox_conf"
|
1072 |
-
top: "conv4_3_norm_mbox_conf_perm"
|
1073 |
-
permute_param {
|
1074 |
-
order: 0
|
1075 |
-
order: 2
|
1076 |
-
order: 3
|
1077 |
-
order: 1
|
1078 |
-
}
|
1079 |
-
}
|
1080 |
-
layer {
|
1081 |
-
name: "conv4_3_norm_mbox_conf_flat"
|
1082 |
-
type: "Flatten"
|
1083 |
-
bottom: "conv4_3_norm_mbox_conf_perm"
|
1084 |
-
top: "conv4_3_norm_mbox_conf_flat"
|
1085 |
-
flatten_param {
|
1086 |
-
axis: 1
|
1087 |
-
}
|
1088 |
-
}
|
1089 |
-
layer {
|
1090 |
-
name: "conv4_3_norm_mbox_priorbox"
|
1091 |
-
type: "PriorBox"
|
1092 |
-
bottom: "conv4_3_norm"
|
1093 |
-
bottom: "data"
|
1094 |
-
top: "conv4_3_norm_mbox_priorbox"
|
1095 |
-
prior_box_param {
|
1096 |
-
min_size: 30.0
|
1097 |
-
max_size: 60.0
|
1098 |
-
aspect_ratio: 2
|
1099 |
-
flip: true
|
1100 |
-
clip: false
|
1101 |
-
variance: 0.1
|
1102 |
-
variance: 0.1
|
1103 |
-
variance: 0.2
|
1104 |
-
variance: 0.2
|
1105 |
-
step: 8
|
1106 |
-
offset: 0.5
|
1107 |
-
}
|
1108 |
-
}
|
1109 |
-
layer {
|
1110 |
-
name: "fc7_mbox_loc"
|
1111 |
-
type: "Convolution"
|
1112 |
-
bottom: "fc7"
|
1113 |
-
top: "fc7_mbox_loc"
|
1114 |
-
param {
|
1115 |
-
lr_mult: 1
|
1116 |
-
decay_mult: 1
|
1117 |
-
}
|
1118 |
-
param {
|
1119 |
-
lr_mult: 2
|
1120 |
-
decay_mult: 0
|
1121 |
-
}
|
1122 |
-
convolution_param {
|
1123 |
-
num_output: 24
|
1124 |
-
pad: 1
|
1125 |
-
kernel_size: 3
|
1126 |
-
stride: 1
|
1127 |
-
weight_filler {
|
1128 |
-
type: "xavier"
|
1129 |
-
}
|
1130 |
-
bias_filler {
|
1131 |
-
type: "constant"
|
1132 |
-
value: 0
|
1133 |
-
}
|
1134 |
-
}
|
1135 |
-
}
|
1136 |
-
layer {
|
1137 |
-
name: "fc7_mbox_loc_perm"
|
1138 |
-
type: "Permute"
|
1139 |
-
bottom: "fc7_mbox_loc"
|
1140 |
-
top: "fc7_mbox_loc_perm"
|
1141 |
-
permute_param {
|
1142 |
-
order: 0
|
1143 |
-
order: 2
|
1144 |
-
order: 3
|
1145 |
-
order: 1
|
1146 |
-
}
|
1147 |
-
}
|
1148 |
-
layer {
|
1149 |
-
name: "fc7_mbox_loc_flat"
|
1150 |
-
type: "Flatten"
|
1151 |
-
bottom: "fc7_mbox_loc_perm"
|
1152 |
-
top: "fc7_mbox_loc_flat"
|
1153 |
-
flatten_param {
|
1154 |
-
axis: 1
|
1155 |
-
}
|
1156 |
-
}
|
1157 |
-
layer {
|
1158 |
-
name: "fc7_mbox_conf"
|
1159 |
-
type: "Convolution"
|
1160 |
-
bottom: "fc7"
|
1161 |
-
top: "fc7_mbox_conf"
|
1162 |
-
param {
|
1163 |
-
lr_mult: 1
|
1164 |
-
decay_mult: 1
|
1165 |
-
}
|
1166 |
-
param {
|
1167 |
-
lr_mult: 2
|
1168 |
-
decay_mult: 0
|
1169 |
-
}
|
1170 |
-
convolution_param {
|
1171 |
-
num_output: 12 # 126
|
1172 |
-
pad: 1
|
1173 |
-
kernel_size: 3
|
1174 |
-
stride: 1
|
1175 |
-
weight_filler {
|
1176 |
-
type: "xavier"
|
1177 |
-
}
|
1178 |
-
bias_filler {
|
1179 |
-
type: "constant"
|
1180 |
-
value: 0
|
1181 |
-
}
|
1182 |
-
}
|
1183 |
-
}
|
1184 |
-
layer {
|
1185 |
-
name: "fc7_mbox_conf_perm"
|
1186 |
-
type: "Permute"
|
1187 |
-
bottom: "fc7_mbox_conf"
|
1188 |
-
top: "fc7_mbox_conf_perm"
|
1189 |
-
permute_param {
|
1190 |
-
order: 0
|
1191 |
-
order: 2
|
1192 |
-
order: 3
|
1193 |
-
order: 1
|
1194 |
-
}
|
1195 |
-
}
|
1196 |
-
layer {
|
1197 |
-
name: "fc7_mbox_conf_flat"
|
1198 |
-
type: "Flatten"
|
1199 |
-
bottom: "fc7_mbox_conf_perm"
|
1200 |
-
top: "fc7_mbox_conf_flat"
|
1201 |
-
flatten_param {
|
1202 |
-
axis: 1
|
1203 |
-
}
|
1204 |
-
}
|
1205 |
-
layer {
|
1206 |
-
name: "fc7_mbox_priorbox"
|
1207 |
-
type: "PriorBox"
|
1208 |
-
bottom: "fc7"
|
1209 |
-
bottom: "data"
|
1210 |
-
top: "fc7_mbox_priorbox"
|
1211 |
-
prior_box_param {
|
1212 |
-
min_size: 60.0
|
1213 |
-
max_size: 111.0
|
1214 |
-
aspect_ratio: 2
|
1215 |
-
aspect_ratio: 3
|
1216 |
-
flip: true
|
1217 |
-
clip: false
|
1218 |
-
variance: 0.1
|
1219 |
-
variance: 0.1
|
1220 |
-
variance: 0.2
|
1221 |
-
variance: 0.2
|
1222 |
-
step: 16
|
1223 |
-
offset: 0.5
|
1224 |
-
}
|
1225 |
-
}
|
1226 |
-
layer {
|
1227 |
-
name: "conv6_2_mbox_loc"
|
1228 |
-
type: "Convolution"
|
1229 |
-
bottom: "conv6_2_h"
|
1230 |
-
top: "conv6_2_mbox_loc"
|
1231 |
-
param {
|
1232 |
-
lr_mult: 1
|
1233 |
-
decay_mult: 1
|
1234 |
-
}
|
1235 |
-
param {
|
1236 |
-
lr_mult: 2
|
1237 |
-
decay_mult: 0
|
1238 |
-
}
|
1239 |
-
convolution_param {
|
1240 |
-
num_output: 24
|
1241 |
-
pad: 1
|
1242 |
-
kernel_size: 3
|
1243 |
-
stride: 1
|
1244 |
-
weight_filler {
|
1245 |
-
type: "xavier"
|
1246 |
-
}
|
1247 |
-
bias_filler {
|
1248 |
-
type: "constant"
|
1249 |
-
value: 0
|
1250 |
-
}
|
1251 |
-
}
|
1252 |
-
}
|
1253 |
-
layer {
|
1254 |
-
name: "conv6_2_mbox_loc_perm"
|
1255 |
-
type: "Permute"
|
1256 |
-
bottom: "conv6_2_mbox_loc"
|
1257 |
-
top: "conv6_2_mbox_loc_perm"
|
1258 |
-
permute_param {
|
1259 |
-
order: 0
|
1260 |
-
order: 2
|
1261 |
-
order: 3
|
1262 |
-
order: 1
|
1263 |
-
}
|
1264 |
-
}
|
1265 |
-
layer {
|
1266 |
-
name: "conv6_2_mbox_loc_flat"
|
1267 |
-
type: "Flatten"
|
1268 |
-
bottom: "conv6_2_mbox_loc_perm"
|
1269 |
-
top: "conv6_2_mbox_loc_flat"
|
1270 |
-
flatten_param {
|
1271 |
-
axis: 1
|
1272 |
-
}
|
1273 |
-
}
|
1274 |
-
layer {
|
1275 |
-
name: "conv6_2_mbox_conf"
|
1276 |
-
type: "Convolution"
|
1277 |
-
bottom: "conv6_2_h"
|
1278 |
-
top: "conv6_2_mbox_conf"
|
1279 |
-
param {
|
1280 |
-
lr_mult: 1
|
1281 |
-
decay_mult: 1
|
1282 |
-
}
|
1283 |
-
param {
|
1284 |
-
lr_mult: 2
|
1285 |
-
decay_mult: 0
|
1286 |
-
}
|
1287 |
-
convolution_param {
|
1288 |
-
num_output: 12 # 126
|
1289 |
-
pad: 1
|
1290 |
-
kernel_size: 3
|
1291 |
-
stride: 1
|
1292 |
-
weight_filler {
|
1293 |
-
type: "xavier"
|
1294 |
-
}
|
1295 |
-
bias_filler {
|
1296 |
-
type: "constant"
|
1297 |
-
value: 0
|
1298 |
-
}
|
1299 |
-
}
|
1300 |
-
}
|
1301 |
-
layer {
|
1302 |
-
name: "conv6_2_mbox_conf_perm"
|
1303 |
-
type: "Permute"
|
1304 |
-
bottom: "conv6_2_mbox_conf"
|
1305 |
-
top: "conv6_2_mbox_conf_perm"
|
1306 |
-
permute_param {
|
1307 |
-
order: 0
|
1308 |
-
order: 2
|
1309 |
-
order: 3
|
1310 |
-
order: 1
|
1311 |
-
}
|
1312 |
-
}
|
1313 |
-
layer {
|
1314 |
-
name: "conv6_2_mbox_conf_flat"
|
1315 |
-
type: "Flatten"
|
1316 |
-
bottom: "conv6_2_mbox_conf_perm"
|
1317 |
-
top: "conv6_2_mbox_conf_flat"
|
1318 |
-
flatten_param {
|
1319 |
-
axis: 1
|
1320 |
-
}
|
1321 |
-
}
|
1322 |
-
layer {
|
1323 |
-
name: "conv6_2_mbox_priorbox"
|
1324 |
-
type: "PriorBox"
|
1325 |
-
bottom: "conv6_2_h"
|
1326 |
-
bottom: "data"
|
1327 |
-
top: "conv6_2_mbox_priorbox"
|
1328 |
-
prior_box_param {
|
1329 |
-
min_size: 111.0
|
1330 |
-
max_size: 162.0
|
1331 |
-
aspect_ratio: 2
|
1332 |
-
aspect_ratio: 3
|
1333 |
-
flip: true
|
1334 |
-
clip: false
|
1335 |
-
variance: 0.1
|
1336 |
-
variance: 0.1
|
1337 |
-
variance: 0.2
|
1338 |
-
variance: 0.2
|
1339 |
-
step: 32
|
1340 |
-
offset: 0.5
|
1341 |
-
}
|
1342 |
-
}
|
1343 |
-
layer {
|
1344 |
-
name: "conv7_2_mbox_loc"
|
1345 |
-
type: "Convolution"
|
1346 |
-
bottom: "conv7_2_h"
|
1347 |
-
top: "conv7_2_mbox_loc"
|
1348 |
-
param {
|
1349 |
-
lr_mult: 1
|
1350 |
-
decay_mult: 1
|
1351 |
-
}
|
1352 |
-
param {
|
1353 |
-
lr_mult: 2
|
1354 |
-
decay_mult: 0
|
1355 |
-
}
|
1356 |
-
convolution_param {
|
1357 |
-
num_output: 24
|
1358 |
-
pad: 1
|
1359 |
-
kernel_size: 3
|
1360 |
-
stride: 1
|
1361 |
-
weight_filler {
|
1362 |
-
type: "xavier"
|
1363 |
-
}
|
1364 |
-
bias_filler {
|
1365 |
-
type: "constant"
|
1366 |
-
value: 0
|
1367 |
-
}
|
1368 |
-
}
|
1369 |
-
}
|
1370 |
-
layer {
|
1371 |
-
name: "conv7_2_mbox_loc_perm"
|
1372 |
-
type: "Permute"
|
1373 |
-
bottom: "conv7_2_mbox_loc"
|
1374 |
-
top: "conv7_2_mbox_loc_perm"
|
1375 |
-
permute_param {
|
1376 |
-
order: 0
|
1377 |
-
order: 2
|
1378 |
-
order: 3
|
1379 |
-
order: 1
|
1380 |
-
}
|
1381 |
-
}
|
1382 |
-
layer {
|
1383 |
-
name: "conv7_2_mbox_loc_flat"
|
1384 |
-
type: "Flatten"
|
1385 |
-
bottom: "conv7_2_mbox_loc_perm"
|
1386 |
-
top: "conv7_2_mbox_loc_flat"
|
1387 |
-
flatten_param {
|
1388 |
-
axis: 1
|
1389 |
-
}
|
1390 |
-
}
|
1391 |
-
layer {
|
1392 |
-
name: "conv7_2_mbox_conf"
|
1393 |
-
type: "Convolution"
|
1394 |
-
bottom: "conv7_2_h"
|
1395 |
-
top: "conv7_2_mbox_conf"
|
1396 |
-
param {
|
1397 |
-
lr_mult: 1
|
1398 |
-
decay_mult: 1
|
1399 |
-
}
|
1400 |
-
param {
|
1401 |
-
lr_mult: 2
|
1402 |
-
decay_mult: 0
|
1403 |
-
}
|
1404 |
-
convolution_param {
|
1405 |
-
num_output: 12 # 126
|
1406 |
-
pad: 1
|
1407 |
-
kernel_size: 3
|
1408 |
-
stride: 1
|
1409 |
-
weight_filler {
|
1410 |
-
type: "xavier"
|
1411 |
-
}
|
1412 |
-
bias_filler {
|
1413 |
-
type: "constant"
|
1414 |
-
value: 0
|
1415 |
-
}
|
1416 |
-
}
|
1417 |
-
}
|
1418 |
-
layer {
|
1419 |
-
name: "conv7_2_mbox_conf_perm"
|
1420 |
-
type: "Permute"
|
1421 |
-
bottom: "conv7_2_mbox_conf"
|
1422 |
-
top: "conv7_2_mbox_conf_perm"
|
1423 |
-
permute_param {
|
1424 |
-
order: 0
|
1425 |
-
order: 2
|
1426 |
-
order: 3
|
1427 |
-
order: 1
|
1428 |
-
}
|
1429 |
-
}
|
1430 |
-
layer {
|
1431 |
-
name: "conv7_2_mbox_conf_flat"
|
1432 |
-
type: "Flatten"
|
1433 |
-
bottom: "conv7_2_mbox_conf_perm"
|
1434 |
-
top: "conv7_2_mbox_conf_flat"
|
1435 |
-
flatten_param {
|
1436 |
-
axis: 1
|
1437 |
-
}
|
1438 |
-
}
|
1439 |
-
layer {
|
1440 |
-
name: "conv7_2_mbox_priorbox"
|
1441 |
-
type: "PriorBox"
|
1442 |
-
bottom: "conv7_2_h"
|
1443 |
-
bottom: "data"
|
1444 |
-
top: "conv7_2_mbox_priorbox"
|
1445 |
-
prior_box_param {
|
1446 |
-
min_size: 162.0
|
1447 |
-
max_size: 213.0
|
1448 |
-
aspect_ratio: 2
|
1449 |
-
aspect_ratio: 3
|
1450 |
-
flip: true
|
1451 |
-
clip: false
|
1452 |
-
variance: 0.1
|
1453 |
-
variance: 0.1
|
1454 |
-
variance: 0.2
|
1455 |
-
variance: 0.2
|
1456 |
-
step: 64
|
1457 |
-
offset: 0.5
|
1458 |
-
}
|
1459 |
-
}
|
1460 |
-
layer {
|
1461 |
-
name: "conv8_2_mbox_loc"
|
1462 |
-
type: "Convolution"
|
1463 |
-
bottom: "conv8_2_h"
|
1464 |
-
top: "conv8_2_mbox_loc"
|
1465 |
-
param {
|
1466 |
-
lr_mult: 1
|
1467 |
-
decay_mult: 1
|
1468 |
-
}
|
1469 |
-
param {
|
1470 |
-
lr_mult: 2
|
1471 |
-
decay_mult: 0
|
1472 |
-
}
|
1473 |
-
convolution_param {
|
1474 |
-
num_output: 16
|
1475 |
-
pad: 1
|
1476 |
-
kernel_size: 3
|
1477 |
-
stride: 1
|
1478 |
-
weight_filler {
|
1479 |
-
type: "xavier"
|
1480 |
-
}
|
1481 |
-
bias_filler {
|
1482 |
-
type: "constant"
|
1483 |
-
value: 0
|
1484 |
-
}
|
1485 |
-
}
|
1486 |
-
}
|
1487 |
-
layer {
|
1488 |
-
name: "conv8_2_mbox_loc_perm"
|
1489 |
-
type: "Permute"
|
1490 |
-
bottom: "conv8_2_mbox_loc"
|
1491 |
-
top: "conv8_2_mbox_loc_perm"
|
1492 |
-
permute_param {
|
1493 |
-
order: 0
|
1494 |
-
order: 2
|
1495 |
-
order: 3
|
1496 |
-
order: 1
|
1497 |
-
}
|
1498 |
-
}
|
1499 |
-
layer {
|
1500 |
-
name: "conv8_2_mbox_loc_flat"
|
1501 |
-
type: "Flatten"
|
1502 |
-
bottom: "conv8_2_mbox_loc_perm"
|
1503 |
-
top: "conv8_2_mbox_loc_flat"
|
1504 |
-
flatten_param {
|
1505 |
-
axis: 1
|
1506 |
-
}
|
1507 |
-
}
|
1508 |
-
layer {
|
1509 |
-
name: "conv8_2_mbox_conf"
|
1510 |
-
type: "Convolution"
|
1511 |
-
bottom: "conv8_2_h"
|
1512 |
-
top: "conv8_2_mbox_conf"
|
1513 |
-
param {
|
1514 |
-
lr_mult: 1
|
1515 |
-
decay_mult: 1
|
1516 |
-
}
|
1517 |
-
param {
|
1518 |
-
lr_mult: 2
|
1519 |
-
decay_mult: 0
|
1520 |
-
}
|
1521 |
-
convolution_param {
|
1522 |
-
num_output: 8 # 84
|
1523 |
-
pad: 1
|
1524 |
-
kernel_size: 3
|
1525 |
-
stride: 1
|
1526 |
-
weight_filler {
|
1527 |
-
type: "xavier"
|
1528 |
-
}
|
1529 |
-
bias_filler {
|
1530 |
-
type: "constant"
|
1531 |
-
value: 0
|
1532 |
-
}
|
1533 |
-
}
|
1534 |
-
}
|
1535 |
-
layer {
|
1536 |
-
name: "conv8_2_mbox_conf_perm"
|
1537 |
-
type: "Permute"
|
1538 |
-
bottom: "conv8_2_mbox_conf"
|
1539 |
-
top: "conv8_2_mbox_conf_perm"
|
1540 |
-
permute_param {
|
1541 |
-
order: 0
|
1542 |
-
order: 2
|
1543 |
-
order: 3
|
1544 |
-
order: 1
|
1545 |
-
}
|
1546 |
-
}
|
1547 |
-
layer {
|
1548 |
-
name: "conv8_2_mbox_conf_flat"
|
1549 |
-
type: "Flatten"
|
1550 |
-
bottom: "conv8_2_mbox_conf_perm"
|
1551 |
-
top: "conv8_2_mbox_conf_flat"
|
1552 |
-
flatten_param {
|
1553 |
-
axis: 1
|
1554 |
-
}
|
1555 |
-
}
|
1556 |
-
layer {
|
1557 |
-
name: "conv8_2_mbox_priorbox"
|
1558 |
-
type: "PriorBox"
|
1559 |
-
bottom: "conv8_2_h"
|
1560 |
-
bottom: "data"
|
1561 |
-
top: "conv8_2_mbox_priorbox"
|
1562 |
-
prior_box_param {
|
1563 |
-
min_size: 213.0
|
1564 |
-
max_size: 264.0
|
1565 |
-
aspect_ratio: 2
|
1566 |
-
flip: true
|
1567 |
-
clip: false
|
1568 |
-
variance: 0.1
|
1569 |
-
variance: 0.1
|
1570 |
-
variance: 0.2
|
1571 |
-
variance: 0.2
|
1572 |
-
step: 100
|
1573 |
-
offset: 0.5
|
1574 |
-
}
|
1575 |
-
}
|
1576 |
-
layer {
|
1577 |
-
name: "conv9_2_mbox_loc"
|
1578 |
-
type: "Convolution"
|
1579 |
-
bottom: "conv9_2_h"
|
1580 |
-
top: "conv9_2_mbox_loc"
|
1581 |
-
param {
|
1582 |
-
lr_mult: 1
|
1583 |
-
decay_mult: 1
|
1584 |
-
}
|
1585 |
-
param {
|
1586 |
-
lr_mult: 2
|
1587 |
-
decay_mult: 0
|
1588 |
-
}
|
1589 |
-
convolution_param {
|
1590 |
-
num_output: 16
|
1591 |
-
pad: 1
|
1592 |
-
kernel_size: 3
|
1593 |
-
stride: 1
|
1594 |
-
weight_filler {
|
1595 |
-
type: "xavier"
|
1596 |
-
}
|
1597 |
-
bias_filler {
|
1598 |
-
type: "constant"
|
1599 |
-
value: 0
|
1600 |
-
}
|
1601 |
-
}
|
1602 |
-
}
|
1603 |
-
layer {
|
1604 |
-
name: "conv9_2_mbox_loc_perm"
|
1605 |
-
type: "Permute"
|
1606 |
-
bottom: "conv9_2_mbox_loc"
|
1607 |
-
top: "conv9_2_mbox_loc_perm"
|
1608 |
-
permute_param {
|
1609 |
-
order: 0
|
1610 |
-
order: 2
|
1611 |
-
order: 3
|
1612 |
-
order: 1
|
1613 |
-
}
|
1614 |
-
}
|
1615 |
-
layer {
|
1616 |
-
name: "conv9_2_mbox_loc_flat"
|
1617 |
-
type: "Flatten"
|
1618 |
-
bottom: "conv9_2_mbox_loc_perm"
|
1619 |
-
top: "conv9_2_mbox_loc_flat"
|
1620 |
-
flatten_param {
|
1621 |
-
axis: 1
|
1622 |
-
}
|
1623 |
-
}
|
1624 |
-
layer {
|
1625 |
-
name: "conv9_2_mbox_conf"
|
1626 |
-
type: "Convolution"
|
1627 |
-
bottom: "conv9_2_h"
|
1628 |
-
top: "conv9_2_mbox_conf"
|
1629 |
-
param {
|
1630 |
-
lr_mult: 1
|
1631 |
-
decay_mult: 1
|
1632 |
-
}
|
1633 |
-
param {
|
1634 |
-
lr_mult: 2
|
1635 |
-
decay_mult: 0
|
1636 |
-
}
|
1637 |
-
convolution_param {
|
1638 |
-
num_output: 8 # 84
|
1639 |
-
pad: 1
|
1640 |
-
kernel_size: 3
|
1641 |
-
stride: 1
|
1642 |
-
weight_filler {
|
1643 |
-
type: "xavier"
|
1644 |
-
}
|
1645 |
-
bias_filler {
|
1646 |
-
type: "constant"
|
1647 |
-
value: 0
|
1648 |
-
}
|
1649 |
-
}
|
1650 |
-
}
|
1651 |
-
layer {
|
1652 |
-
name: "conv9_2_mbox_conf_perm"
|
1653 |
-
type: "Permute"
|
1654 |
-
bottom: "conv9_2_mbox_conf"
|
1655 |
-
top: "conv9_2_mbox_conf_perm"
|
1656 |
-
permute_param {
|
1657 |
-
order: 0
|
1658 |
-
order: 2
|
1659 |
-
order: 3
|
1660 |
-
order: 1
|
1661 |
-
}
|
1662 |
-
}
|
1663 |
-
layer {
|
1664 |
-
name: "conv9_2_mbox_conf_flat"
|
1665 |
-
type: "Flatten"
|
1666 |
-
bottom: "conv9_2_mbox_conf_perm"
|
1667 |
-
top: "conv9_2_mbox_conf_flat"
|
1668 |
-
flatten_param {
|
1669 |
-
axis: 1
|
1670 |
-
}
|
1671 |
-
}
|
1672 |
-
layer {
|
1673 |
-
name: "conv9_2_mbox_priorbox"
|
1674 |
-
type: "PriorBox"
|
1675 |
-
bottom: "conv9_2_h"
|
1676 |
-
bottom: "data"
|
1677 |
-
top: "conv9_2_mbox_priorbox"
|
1678 |
-
prior_box_param {
|
1679 |
-
min_size: 264.0
|
1680 |
-
max_size: 315.0
|
1681 |
-
aspect_ratio: 2
|
1682 |
-
flip: true
|
1683 |
-
clip: false
|
1684 |
-
variance: 0.1
|
1685 |
-
variance: 0.1
|
1686 |
-
variance: 0.2
|
1687 |
-
variance: 0.2
|
1688 |
-
step: 300
|
1689 |
-
offset: 0.5
|
1690 |
-
}
|
1691 |
-
}
|
1692 |
-
layer {
|
1693 |
-
name: "mbox_loc"
|
1694 |
-
type: "Concat"
|
1695 |
-
bottom: "conv4_3_norm_mbox_loc_flat"
|
1696 |
-
bottom: "fc7_mbox_loc_flat"
|
1697 |
-
bottom: "conv6_2_mbox_loc_flat"
|
1698 |
-
bottom: "conv7_2_mbox_loc_flat"
|
1699 |
-
bottom: "conv8_2_mbox_loc_flat"
|
1700 |
-
bottom: "conv9_2_mbox_loc_flat"
|
1701 |
-
top: "mbox_loc"
|
1702 |
-
concat_param {
|
1703 |
-
axis: 1
|
1704 |
-
}
|
1705 |
-
}
|
1706 |
-
layer {
|
1707 |
-
name: "mbox_conf"
|
1708 |
-
type: "Concat"
|
1709 |
-
bottom: "conv4_3_norm_mbox_conf_flat"
|
1710 |
-
bottom: "fc7_mbox_conf_flat"
|
1711 |
-
bottom: "conv6_2_mbox_conf_flat"
|
1712 |
-
bottom: "conv7_2_mbox_conf_flat"
|
1713 |
-
bottom: "conv8_2_mbox_conf_flat"
|
1714 |
-
bottom: "conv9_2_mbox_conf_flat"
|
1715 |
-
top: "mbox_conf"
|
1716 |
-
concat_param {
|
1717 |
-
axis: 1
|
1718 |
-
}
|
1719 |
-
}
|
1720 |
-
layer {
|
1721 |
-
name: "mbox_priorbox"
|
1722 |
-
type: "Concat"
|
1723 |
-
bottom: "conv4_3_norm_mbox_priorbox"
|
1724 |
-
bottom: "fc7_mbox_priorbox"
|
1725 |
-
bottom: "conv6_2_mbox_priorbox"
|
1726 |
-
bottom: "conv7_2_mbox_priorbox"
|
1727 |
-
bottom: "conv8_2_mbox_priorbox"
|
1728 |
-
bottom: "conv9_2_mbox_priorbox"
|
1729 |
-
top: "mbox_priorbox"
|
1730 |
-
concat_param {
|
1731 |
-
axis: 2
|
1732 |
-
}
|
1733 |
-
}
|
1734 |
-
|
1735 |
-
layer {
|
1736 |
-
name: "mbox_conf_reshape"
|
1737 |
-
type: "Reshape"
|
1738 |
-
bottom: "mbox_conf"
|
1739 |
-
top: "mbox_conf_reshape"
|
1740 |
-
reshape_param {
|
1741 |
-
shape {
|
1742 |
-
dim: 0
|
1743 |
-
dim: -1
|
1744 |
-
dim: 2
|
1745 |
-
}
|
1746 |
-
}
|
1747 |
-
}
|
1748 |
-
layer {
|
1749 |
-
name: "mbox_conf_softmax"
|
1750 |
-
type: "Softmax"
|
1751 |
-
bottom: "mbox_conf_reshape"
|
1752 |
-
top: "mbox_conf_softmax"
|
1753 |
-
softmax_param {
|
1754 |
-
axis: 2
|
1755 |
-
}
|
1756 |
-
}
|
1757 |
-
layer {
|
1758 |
-
name: "mbox_conf_flatten"
|
1759 |
-
type: "Flatten"
|
1760 |
-
bottom: "mbox_conf_softmax"
|
1761 |
-
top: "mbox_conf_flatten"
|
1762 |
-
flatten_param {
|
1763 |
-
axis: 1
|
1764 |
-
}
|
1765 |
-
}
|
1766 |
-
|
1767 |
-
layer {
|
1768 |
-
name: "detection_out"
|
1769 |
-
type: "DetectionOutput"
|
1770 |
-
bottom: "mbox_loc"
|
1771 |
-
bottom: "mbox_conf_flatten"
|
1772 |
-
bottom: "mbox_priorbox"
|
1773 |
-
top: "detection_out"
|
1774 |
-
include {
|
1775 |
-
phase: TEST
|
1776 |
-
}
|
1777 |
-
detection_output_param {
|
1778 |
-
num_classes: 2
|
1779 |
-
share_location: true
|
1780 |
-
background_label_id: 0
|
1781 |
-
nms_param {
|
1782 |
-
nms_threshold: 0.3
|
1783 |
-
top_k: 400
|
1784 |
-
}
|
1785 |
-
code_type: CENTER_SIZE
|
1786 |
-
keep_top_k: 200
|
1787 |
-
confidence_threshold: 0.01
|
1788 |
-
}
|
1789 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
download_models.py
CHANGED
@@ -1,56 +1,16 @@
|
|
|
|
1 |
import os
|
2 |
import re
|
3 |
-
import cv2
|
4 |
-
import numpy as np
|
5 |
-
import io
|
6 |
import sys
|
|
|
|
|
7 |
import numpy as np
|
8 |
-
import timm
|
9 |
import pyiqa
|
|
|
10 |
import torch
|
11 |
-
from
|
12 |
-
|
13 |
|
14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
|
16 |
-
licence_model = torch.hub.load(
|
17 |
-
"ultralytics/yolov5", "custom", path="Licenseplate_model.pt", device="cpu", force_reload=True
|
18 |
-
)
|
19 |
-
licence_model.cpu()
|
20 |
-
|
21 |
-
detector = cv2.dnn.DetectionModel("res10_300x300_ssd_iter_140000_fp16.caffemodel", "deploy.prototxt")
|
22 |
-
|
23 |
-
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
|
24 |
-
doc_qa_model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
|
25 |
-
|
26 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
27 |
-
doc_qa_model.to(device)
|
28 |
-
|
29 |
-
model = torch.hub.load(
|
30 |
-
"ultralytics/yolov5", "custom", path="best.pt", device="cpu", force_reload=True
|
31 |
-
)
|
32 |
-
model.cpu()
|
33 |
-
|
34 |
-
classes = [
|
35 |
-
"gas-distribution-meter",
|
36 |
-
"gas-distribution-piping",
|
37 |
-
"gas-distribution-regulator",
|
38 |
-
"gas-distribution-valve"
|
39 |
-
]
|
40 |
-
|
41 |
-
class_to_idx = {'gas-distribution-meter': 0,
|
42 |
-
'gas-distribution-piping': 1,
|
43 |
-
'gas-distribution-regulator': 2,
|
44 |
-
'gas-distribution-valve': 3}
|
45 |
-
|
46 |
-
idx_to_classes = {v:k for k,v in class_to_idx.items()}
|
47 |
-
modelname = "resnet50d"
|
48 |
-
model_weights = "best_classifer_model.pt"
|
49 |
-
num_classes = len(classes)
|
50 |
-
|
51 |
-
classifier_model = timm.create_model(
|
52 |
-
"resnet50d", pretrained=True, num_classes=num_classes, drop_path_rate=0.05
|
53 |
-
)
|
54 |
-
classifier_model.load_state_dict(torch.load(model_weights, map_location=torch.device('cpu'))["model_state_dict"])
|
55 |
|
56 |
-
|
|
|
1 |
+
import io
|
2 |
import os
|
3 |
import re
|
|
|
|
|
|
|
4 |
import sys
|
5 |
+
|
6 |
+
import cv2
|
7 |
import numpy as np
|
|
|
8 |
import pyiqa
|
9 |
+
import timm
|
10 |
import torch
|
11 |
+
from sentence_transformers import SentenceTransformer
|
|
|
12 |
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
image_sim_model = SentenceTransformer("clip-ViT-B-32")
|
res10_300x300_ssd_iter_140000_fp16.caffemodel
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:510ffd2471bd81e3fcc88a5beb4eae4fb445ccf8333ebc54e7302b83f4158a76
|
3 |
-
size 5351047
|
|
|
|
|
|
|
|