Spaces:
Runtime error
Runtime error
abhi001vj
commited on
Commit
Β·
637af2f
1
Parent(s):
31e192b
added the fixes for local
Browse files- .env +2 -2
- Licenseplate_model.pt +0 -3
- app.py +5 -350
- best.pt +0 -3
- best_classifer_model.pt +0 -3
- deploy.prototxt +0 -1789
- download_models.py +6 -46
- res10_300x300_ssd_iter_140000_fp16.caffemodel +0 -3
.env
CHANGED
|
@@ -1,2 +1,2 @@
|
|
| 1 |
-
PINECONE_KEY=
|
| 2 |
-
PINECONE_ENV=
|
|
|
|
| 1 |
+
PINECONE_KEY=
|
| 2 |
+
PINECONE_ENV=
|
Licenseplate_model.pt
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:3c9a080781aa7ff722968c944a702983af8a452753edd5ba20719d42349ec7bd
|
| 3 |
-
size 71780037
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
|
@@ -1,5 +1,3 @@
|
|
| 1 |
-
import cv2
|
| 2 |
-
import numpy as np
|
| 3 |
import argparse
|
| 4 |
import base64
|
| 5 |
import io
|
|
@@ -9,8 +7,7 @@ import sys
|
|
| 9 |
import traceback
|
| 10 |
import uuid
|
| 11 |
from typing import List, Optional
|
| 12 |
-
|
| 13 |
-
import traceback
|
| 14 |
import cv2
|
| 15 |
import numpy as np
|
| 16 |
import pandas as pd
|
|
@@ -21,31 +18,20 @@ import torch
|
|
| 21 |
import uvicorn
|
| 22 |
from dotenv import load_dotenv
|
| 23 |
from fastapi import FastAPI, File, Form, HTTPException, UploadFile
|
| 24 |
-
from PIL import Image
|
| 25 |
from pydantic import BaseModel
|
| 26 |
from sentence_transformers import SentenceTransformer, util
|
| 27 |
-
from transformers import (
|
| 28 |
-
AutoFeatureExtractor,
|
| 29 |
-
AutoModel,
|
| 30 |
-
DonutProcessor,
|
| 31 |
-
VisionEncoderDecoderModel,
|
| 32 |
-
)
|
| 33 |
|
| 34 |
load_dotenv()
|
| 35 |
pinecone.init(api_key=os.getenv("PINECONE_KEY"), environment=os.getenv("PINECONE_ENV"))
|
| 36 |
-
|
| 37 |
-
CLASSIFICATION_URL = "/object-classification/"
|
| 38 |
-
QUALITY_ASSESSMENT_URL = "/quality-assessment/"
|
| 39 |
-
FACE_URL = "/face-anonymization/"
|
| 40 |
-
LICENCE_URL = "/licenceplate-anonymization/"
|
| 41 |
-
DOCUMENT_QA = "/document-qa/"
|
| 42 |
IMAGE_SIMILARITY_DEMO = "/find-similar-image/"
|
| 43 |
IMAGE_SIMILARITY_PINECONE_DEMO = "/find-similar-image-pinecone/"
|
| 44 |
INDEX_NAME = "imagesearch-demo"
|
| 45 |
INDEX_DIMENSION = 512
|
| 46 |
TMP_DIR = "tmp"
|
| 47 |
|
| 48 |
-
|
| 49 |
|
| 50 |
def enhance_image(pil_image):
|
| 51 |
# Convert PIL Image to OpenCV format
|
|
@@ -99,353 +85,22 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
| 99 |
|
| 100 |
os.makedirs(TMP_DIR, exist_ok=True)
|
| 101 |
|
| 102 |
-
licence_model = torch.hub.load(
|
| 103 |
-
"ultralytics/yolov5", "custom", path="Licenseplate_model.pt", device="cpu", force_reload=True
|
| 104 |
-
)
|
| 105 |
-
licence_model.cpu()
|
| 106 |
-
|
| 107 |
-
detector = cv2.dnn.DetectionModel(
|
| 108 |
-
"res10_300x300_ssd_iter_140000_fp16.caffemodel", "deploy.prototxt"
|
| 109 |
-
)
|
| 110 |
-
|
| 111 |
-
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
|
| 112 |
-
doc_qa_model = VisionEncoderDecoderModel.from_pretrained(
|
| 113 |
-
"naver-clova-ix/donut-base-finetuned-docvqa"
|
| 114 |
-
)
|
| 115 |
|
| 116 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 117 |
-
doc_qa_model.to(device)
|
| 118 |
|
| 119 |
|
| 120 |
os.makedirs(TMP_DIR, exist_ok=True)
|
| 121 |
|
| 122 |
-
model = torch.hub.load(
|
| 123 |
-
"ultralytics/yolov5", "custom", path="best.pt", device="cpu", force_reload=True
|
| 124 |
-
)
|
| 125 |
-
model.cpu()
|
| 126 |
-
|
| 127 |
-
classes = [
|
| 128 |
-
"gas-distribution-meter",
|
| 129 |
-
"gas-distribution-piping",
|
| 130 |
-
"gas-distribution-regulator",
|
| 131 |
-
"gas-distribution-valve",
|
| 132 |
-
]
|
| 133 |
-
|
| 134 |
-
class_to_idx = {
|
| 135 |
-
"gas-distribution-meter": 0,
|
| 136 |
-
"gas-distribution-piping": 1,
|
| 137 |
-
"gas-distribution-regulator": 2,
|
| 138 |
-
"gas-distribution-valve": 3,
|
| 139 |
-
}
|
| 140 |
-
|
| 141 |
-
idx_to_classes = {v: k for k, v in class_to_idx.items()}
|
| 142 |
-
modelname = "resnet50d"
|
| 143 |
-
model_weights = "best_classifer_model.pt"
|
| 144 |
-
num_classes = len(classes)
|
| 145 |
-
|
| 146 |
-
classifier_model = timm.create_model(
|
| 147 |
-
"resnet50d", pretrained=True, num_classes=num_classes, drop_path_rate=0.05
|
| 148 |
-
)
|
| 149 |
-
classifier_model.load_state_dict(
|
| 150 |
-
torch.load(model_weights, map_location=torch.device("cpu"))["model_state_dict"]
|
| 151 |
-
)
|
| 152 |
-
|
| 153 |
-
musiq_metric = pyiqa.create_metric("musiq-koniq", device=torch.device("cpu"))
|
| 154 |
-
image_sim_model = SentenceTransformer("clip-ViT-B-32")
|
| 155 |
-
|
| 156 |
|
| 157 |
-
# model_ckpt = "nateraw/vit-base-beans"
|
| 158 |
-
# extractor = AutoFeatureExtractor.from_pretrained(model_ckpt)
|
| 159 |
-
# image_sim_model = AutoModel.from_pretrained(model_ckpt)
|
| 160 |
|
| 161 |
|
| 162 |
app = FastAPI(title="CV Demos")
|
| 163 |
|
| 164 |
-
# Define the Response
|
| 165 |
-
class Prediction(BaseModel):
|
| 166 |
-
filename: str
|
| 167 |
-
contenttype: str
|
| 168 |
-
prediction: List[float] = []
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
# define response
|
| 172 |
-
@app.get("/")
|
| 173 |
-
def root_route():
|
| 174 |
-
return {"error": f"Use GET {DETECTION_URL} instead of the root route!"}
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
@app.post(
|
| 178 |
-
DETECTION_URL,
|
| 179 |
-
)
|
| 180 |
-
async def predict(file: UploadFile = File(...), quality_check: bool = False):
|
| 181 |
-
try:
|
| 182 |
-
extension = file.filename.split(".")[-1] in ("jpg", "jpeg", "png")
|
| 183 |
-
if not extension:
|
| 184 |
-
return "Image must be jpg or png format!"
|
| 185 |
-
# read image contain
|
| 186 |
-
contents = await file.read()
|
| 187 |
-
pil_image = Image.open(io.BytesIO(contents))
|
| 188 |
-
if quality_check:
|
| 189 |
-
print("RUNNING QUALITY CEHCK BEFORE OBJEFCT DETECTION!!!")
|
| 190 |
-
tmp_file = f"{TMP_DIR}/tmp.png"
|
| 191 |
-
pil_image.save(tmp_file)
|
| 192 |
-
score = musiq_metric(tmp_file)
|
| 193 |
-
if score < 50:
|
| 194 |
-
return {
|
| 195 |
-
"Error": "Image quality is not sufficient enough to be considered for object detection"
|
| 196 |
-
}
|
| 197 |
-
|
| 198 |
-
results = model(pil_image, size=640) # reduce size=320 for faster inference
|
| 199 |
-
return results.pandas().xyxy[0].to_json(orient="records")
|
| 200 |
-
except:
|
| 201 |
-
e = sys.exc_info()[1]
|
| 202 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
@app.post(CLASSIFICATION_URL)
|
| 206 |
-
async def classify(file: UploadFile = File(...)):
|
| 207 |
-
try:
|
| 208 |
-
extension = file.filename.split(".")[-1] in ("jpg", "jpeg", "png")
|
| 209 |
-
if not extension:
|
| 210 |
-
return "Image must be jpg or png format!"
|
| 211 |
-
# read image contain
|
| 212 |
-
contents = await file.read()
|
| 213 |
-
pil_image = Image.open(io.BytesIO(contents))
|
| 214 |
-
data_mean = (0.485, 0.456, 0.406)
|
| 215 |
-
data_std = (0.229, 0.224, 0.225)
|
| 216 |
-
image_size = (224, 224)
|
| 217 |
-
eval_transforms = timm.data.create_transform(
|
| 218 |
-
input_size=image_size, mean=data_mean, std=data_std
|
| 219 |
-
)
|
| 220 |
-
eval_transforms(pil_image).unsqueeze(dim=0).shape
|
| 221 |
-
classifier_model.eval()
|
| 222 |
-
print("RUNNING Image Classification!!!")
|
| 223 |
-
max_class_idx = np.argmax(
|
| 224 |
-
classifier_model(eval_transforms(pil_image).unsqueeze(dim=0)).detach().numpy()
|
| 225 |
-
)
|
| 226 |
-
predicted_class = idx_to_classes[max_class_idx]
|
| 227 |
-
print(f"Predicted Class idx: {max_class_idx} with name : {predicted_class}")
|
| 228 |
-
return {"object": predicted_class}
|
| 229 |
-
|
| 230 |
-
except:
|
| 231 |
-
e = sys.exc_info()[1]
|
| 232 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
@app.post(QUALITY_ASSESSMENT_URL)
|
| 236 |
-
async def quality_check(file: UploadFile = File(...)):
|
| 237 |
-
try:
|
| 238 |
-
extension = file.filename.split(".")[-1] in ("jpg", "jpeg", "png")
|
| 239 |
-
if not extension:
|
| 240 |
-
return "Image must be jpg or png format!"
|
| 241 |
-
# read image contain
|
| 242 |
-
contents = await file.read()
|
| 243 |
-
pil_image = Image.open(io.BytesIO(contents))
|
| 244 |
-
tmp_file = f"{TMP_DIR}/tmp.png"
|
| 245 |
-
pil_image.save(tmp_file)
|
| 246 |
-
score = musiq_metric(tmp_file).detach().numpy().tolist()
|
| 247 |
-
return {"score": score}
|
| 248 |
-
|
| 249 |
-
except:
|
| 250 |
-
e = sys.exc_info()[1]
|
| 251 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
def anonymize_simple(image, factor=3.0):
|
| 255 |
-
# automatically determine the size of the blurring kernel based
|
| 256 |
-
# on the spatial dimensions of the input image
|
| 257 |
-
(h, w) = image.shape[:2]
|
| 258 |
-
kW = int(w / factor)
|
| 259 |
-
kH = int(h / factor)
|
| 260 |
-
# ensure the width of the kernel is odd
|
| 261 |
-
if kW % 2 == 0:
|
| 262 |
-
kW -= 1
|
| 263 |
-
# ensure the height of the kernel is odd
|
| 264 |
-
if kH % 2 == 0:
|
| 265 |
-
kH -= 1
|
| 266 |
-
# apply a Gaussian blur to the input image using our computed
|
| 267 |
-
# kernel size
|
| 268 |
-
return cv2.GaussianBlur(image, (kW, kH), 0)
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
def anonymize_pixelate(image, blocks=3):
|
| 272 |
-
# divide the input image into NxN blocks
|
| 273 |
-
(h, w) = image.shape[:2]
|
| 274 |
-
xSteps = np.linspace(0, w, blocks + 1, dtype="int")
|
| 275 |
-
ySteps = np.linspace(0, h, blocks + 1, dtype="int")
|
| 276 |
-
# loop over the blocks in both the x and y direction
|
| 277 |
-
for i in range(1, len(ySteps)):
|
| 278 |
-
for j in range(1, len(xSteps)):
|
| 279 |
-
# compute the starting and ending (x, y)-coordinates
|
| 280 |
-
# for the current block
|
| 281 |
-
startX = xSteps[j - 1]
|
| 282 |
-
startY = ySteps[i - 1]
|
| 283 |
-
endX = xSteps[j]
|
| 284 |
-
endY = ySteps[i]
|
| 285 |
-
# extract the ROI using NumPy array slicing, compute the
|
| 286 |
-
# mean of the ROI, and then draw a rectangle with the
|
| 287 |
-
# mean RGB values over the ROI in the original image
|
| 288 |
-
roi = image[startY:endY, startX:endX]
|
| 289 |
-
(B, G, R) = [int(x) for x in cv2.mean(roi)[:3]]
|
| 290 |
-
cv2.rectangle(image, (startX, startY), (endX, endY), (B, G, R), -1)
|
| 291 |
-
# return the pixelated blurred image
|
| 292 |
-
return image
|
| 293 |
-
|
| 294 |
|
| 295 |
# define response
|
| 296 |
@app.get("/")
|
| 297 |
def root_route():
|
| 298 |
-
return {"error": f"Use GET {
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
@app.post(
|
| 302 |
-
FACE_URL,
|
| 303 |
-
)
|
| 304 |
-
async def face_anonymize(
|
| 305 |
-
file: UploadFile = File(...), blur_type="simple", quality_check: bool = False
|
| 306 |
-
):
|
| 307 |
-
"""
|
| 308 |
-
https://pyimagesearch.com/2020/04/06/blur-and-anonymize-faces-with-opencv-and-python/
|
| 309 |
-
"""
|
| 310 |
-
try:
|
| 311 |
-
extension = file.filename.split(".")[-1] in ("jpg", "jpeg", "png")
|
| 312 |
-
if not extension:
|
| 313 |
-
return "Image must be jpg or png format!"
|
| 314 |
-
# read image contain
|
| 315 |
-
contents = await file.read()
|
| 316 |
-
pil_image = Image.open(io.BytesIO(contents)).convert("RGB")
|
| 317 |
-
detector = cv2.dnn.DetectionModel(
|
| 318 |
-
"res10_300x300_ssd_iter_140000_fp16.caffemodel", "deploy.prototxt"
|
| 319 |
-
)
|
| 320 |
-
open_cv_image = np.array(pil_image)
|
| 321 |
-
# Convert RGB to BGR
|
| 322 |
-
open_cv_image = open_cv_image[:, :, ::-1].copy()
|
| 323 |
-
(h, w) = open_cv_image.shape[:2]
|
| 324 |
-
# Getting the detections
|
| 325 |
-
detections = detector.detect(open_cv_image)
|
| 326 |
-
if len(detections[2]) > 0:
|
| 327 |
-
for face in detections[2]:
|
| 328 |
-
(x, y, w, h) = face.astype("int")
|
| 329 |
-
# extract the face ROI
|
| 330 |
-
|
| 331 |
-
face = open_cv_image[y : y + h, x : x + w]
|
| 332 |
-
if blur_type == "simple":
|
| 333 |
-
face = anonymize_simple(face)
|
| 334 |
-
else:
|
| 335 |
-
face = anonymize_pixelate(face)
|
| 336 |
-
open_cv_image[y : y + h, x : x + w] = face
|
| 337 |
-
|
| 338 |
-
_, encoded_img = cv2.imencode(".PNG", open_cv_image)
|
| 339 |
-
|
| 340 |
-
encoded_img = base64.b64encode(encoded_img)
|
| 341 |
-
return {
|
| 342 |
-
"filename": file.filename,
|
| 343 |
-
"dimensions": str(open_cv_image.shape),
|
| 344 |
-
"encoded_img": encoded_img,
|
| 345 |
-
}
|
| 346 |
-
except:
|
| 347 |
-
e = sys.exc_info()[1]
|
| 348 |
-
print(traceback.format_exc())
|
| 349 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
@app.post(LICENCE_URL)
|
| 353 |
-
async def licence_anonymize(file: UploadFile = File(...), blur_type="simple"):
|
| 354 |
-
"""https://www.kaggle.com/code/gowrishankarp/license-plate-detection-yolov5-pytesseract/notebook#Visualize"""
|
| 355 |
-
try:
|
| 356 |
-
extension = file.filename.split(".")[-1] in ("jpg", "jpeg", "png")
|
| 357 |
-
if not extension:
|
| 358 |
-
return "Image must be jpg or png format!"
|
| 359 |
-
# read image contain
|
| 360 |
-
contents = await file.read()
|
| 361 |
-
pil_image = Image.open(io.BytesIO(contents))
|
| 362 |
-
results = licence_model(pil_image, size=640) # reduce size=320 for faster inference
|
| 363 |
-
pil_image = pil_image.convert("RGB")
|
| 364 |
-
open_cv_image = np.array(pil_image)
|
| 365 |
-
open_cv_image = open_cv_image[:, :, ::-1].copy()
|
| 366 |
-
df = results.pandas().xyxy[0]
|
| 367 |
-
for i, row in df.iterrows():
|
| 368 |
-
xmin = int(row["xmin"])
|
| 369 |
-
ymin = int(row["ymin"])
|
| 370 |
-
xmax = int(row["xmax"])
|
| 371 |
-
ymax = int(row["ymax"])
|
| 372 |
-
licence = open_cv_image[ymin:ymax, xmin:xmax]
|
| 373 |
-
if blur_type == "simple":
|
| 374 |
-
licence = anonymize_simple(licence)
|
| 375 |
-
else:
|
| 376 |
-
licence = anonymize_pixelate(licence)
|
| 377 |
-
open_cv_image[ymin:ymax, xmin:xmax] = licence
|
| 378 |
-
|
| 379 |
-
_, encoded_img = cv2.imencode(".PNG", open_cv_image)
|
| 380 |
-
|
| 381 |
-
encoded_img = base64.b64encode(encoded_img)
|
| 382 |
-
return {
|
| 383 |
-
"filename": file.filename,
|
| 384 |
-
"dimensions": str(open_cv_image.shape),
|
| 385 |
-
"encoded_img": encoded_img,
|
| 386 |
-
}
|
| 387 |
-
|
| 388 |
-
except:
|
| 389 |
-
e = sys.exc_info()[1]
|
| 390 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
def process_document(image, question):
|
| 394 |
-
# prepare encoder inputs
|
| 395 |
-
pixel_values = processor(image, return_tensors="pt").pixel_values
|
| 396 |
-
|
| 397 |
-
# prepare decoder inputs
|
| 398 |
-
task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
|
| 399 |
-
prompt = task_prompt.replace("{user_input}", question)
|
| 400 |
-
decoder_input_ids = processor.tokenizer(
|
| 401 |
-
prompt, add_special_tokens=False, return_tensors="pt"
|
| 402 |
-
).input_ids
|
| 403 |
-
|
| 404 |
-
# generate answer
|
| 405 |
-
outputs = doc_qa_model.generate(
|
| 406 |
-
pixel_values.to(device),
|
| 407 |
-
decoder_input_ids=decoder_input_ids.to(device),
|
| 408 |
-
max_length=doc_qa_model.decoder.config.max_position_embeddings,
|
| 409 |
-
early_stopping=True,
|
| 410 |
-
pad_token_id=processor.tokenizer.pad_token_id,
|
| 411 |
-
eos_token_id=processor.tokenizer.eos_token_id,
|
| 412 |
-
use_cache=True,
|
| 413 |
-
num_beams=1,
|
| 414 |
-
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
| 415 |
-
return_dict_in_generate=True,
|
| 416 |
-
)
|
| 417 |
-
|
| 418 |
-
# postprocess
|
| 419 |
-
sequence = processor.batch_decode(outputs.sequences)[0]
|
| 420 |
-
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(
|
| 421 |
-
processor.tokenizer.pad_token, ""
|
| 422 |
-
)
|
| 423 |
-
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
| 424 |
-
|
| 425 |
-
return processor.token2json(sequence)
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
@app.post(DOCUMENT_QA)
|
| 429 |
-
async def document_qa(question: str = Form(...), file: UploadFile = File(...)):
|
| 430 |
-
|
| 431 |
-
try:
|
| 432 |
-
extension = file.filename.split(".")[-1] in ("jpg", "jpeg", "png")
|
| 433 |
-
if not extension:
|
| 434 |
-
return "Image must be jpg or png format!"
|
| 435 |
-
# read image contain
|
| 436 |
-
contents = await file.read()
|
| 437 |
-
pil_image = Image.open(io.BytesIO(contents))
|
| 438 |
-
# tmp_file = f"{TMP_DIR}/tmp.png"
|
| 439 |
-
# pil_image.save(tmp_file)
|
| 440 |
-
# answer_git_large = generate_answer_git(git_processor_large, git_model_large, image, question)
|
| 441 |
-
|
| 442 |
-
answer = process_document(pil_image, question)["answer"]
|
| 443 |
-
|
| 444 |
-
return {"answer": answer}
|
| 445 |
-
|
| 446 |
-
except:
|
| 447 |
-
e = sys.exc_info()[1]
|
| 448 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 449 |
|
| 450 |
|
| 451 |
@app.post(IMAGE_SIMILARITY_DEMO)
|
|
|
|
|
|
|
|
|
|
| 1 |
import argparse
|
| 2 |
import base64
|
| 3 |
import io
|
|
|
|
| 7 |
import traceback
|
| 8 |
import uuid
|
| 9 |
from typing import List, Optional
|
| 10 |
+
|
|
|
|
| 11 |
import cv2
|
| 12 |
import numpy as np
|
| 13 |
import pandas as pd
|
|
|
|
| 18 |
import uvicorn
|
| 19 |
from dotenv import load_dotenv
|
| 20 |
from fastapi import FastAPI, File, Form, HTTPException, UploadFile
|
| 21 |
+
from PIL import Image, ImageEnhance
|
| 22 |
from pydantic import BaseModel
|
| 23 |
from sentence_transformers import SentenceTransformer, util
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
load_dotenv()
|
| 26 |
pinecone.init(api_key=os.getenv("PINECONE_KEY"), environment=os.getenv("PINECONE_ENV"))
|
| 27 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
IMAGE_SIMILARITY_DEMO = "/find-similar-image/"
|
| 29 |
IMAGE_SIMILARITY_PINECONE_DEMO = "/find-similar-image-pinecone/"
|
| 30 |
INDEX_NAME = "imagesearch-demo"
|
| 31 |
INDEX_DIMENSION = 512
|
| 32 |
TMP_DIR = "tmp"
|
| 33 |
|
| 34 |
+
image_sim_model = SentenceTransformer("clip-ViT-B-32")
|
| 35 |
|
| 36 |
def enhance_image(pil_image):
|
| 37 |
# Convert PIL Image to OpenCV format
|
|
|
|
| 85 |
|
| 86 |
os.makedirs(TMP_DIR, exist_ok=True)
|
| 87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 90 |
|
| 91 |
|
| 92 |
os.makedirs(TMP_DIR, exist_ok=True)
|
| 93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
|
| 97 |
app = FastAPI(title="CV Demos")
|
| 98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
# define response
|
| 101 |
@app.get("/")
|
| 102 |
def root_route():
|
| 103 |
+
return {"error": f"Use GET {IMAGE_SIMILARITY_PINECONE_DEMO} instead of the root route!"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
|
| 106 |
@app.post(IMAGE_SIMILARITY_DEMO)
|
best.pt
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:c8faa2592e29248e58453cb031e536bd96f2929d9768bbd3c78ea54944f045db
|
| 3 |
-
size 14447677
|
|
|
|
|
|
|
|
|
|
|
|
best_classifer_model.pt
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:4e5c0f63fbe8f8349ceda742cc6c7d333c1a2ae443b6f7aa1d100859d59322a7
|
| 3 |
-
size 377080432
|
|
|
|
|
|
|
|
|
|
|
|
deploy.prototxt
DELETED
|
@@ -1,1789 +0,0 @@
|
|
| 1 |
-
input: "data"
|
| 2 |
-
input_shape {
|
| 3 |
-
dim: 1
|
| 4 |
-
dim: 3
|
| 5 |
-
dim: 300
|
| 6 |
-
dim: 300
|
| 7 |
-
}
|
| 8 |
-
|
| 9 |
-
layer {
|
| 10 |
-
name: "data_bn"
|
| 11 |
-
type: "BatchNorm"
|
| 12 |
-
bottom: "data"
|
| 13 |
-
top: "data_bn"
|
| 14 |
-
param {
|
| 15 |
-
lr_mult: 0.0
|
| 16 |
-
}
|
| 17 |
-
param {
|
| 18 |
-
lr_mult: 0.0
|
| 19 |
-
}
|
| 20 |
-
param {
|
| 21 |
-
lr_mult: 0.0
|
| 22 |
-
}
|
| 23 |
-
}
|
| 24 |
-
layer {
|
| 25 |
-
name: "data_scale"
|
| 26 |
-
type: "Scale"
|
| 27 |
-
bottom: "data_bn"
|
| 28 |
-
top: "data_bn"
|
| 29 |
-
param {
|
| 30 |
-
lr_mult: 1.0
|
| 31 |
-
decay_mult: 1.0
|
| 32 |
-
}
|
| 33 |
-
param {
|
| 34 |
-
lr_mult: 2.0
|
| 35 |
-
decay_mult: 1.0
|
| 36 |
-
}
|
| 37 |
-
scale_param {
|
| 38 |
-
bias_term: true
|
| 39 |
-
}
|
| 40 |
-
}
|
| 41 |
-
layer {
|
| 42 |
-
name: "conv1_h"
|
| 43 |
-
type: "Convolution"
|
| 44 |
-
bottom: "data_bn"
|
| 45 |
-
top: "conv1_h"
|
| 46 |
-
param {
|
| 47 |
-
lr_mult: 1.0
|
| 48 |
-
decay_mult: 1.0
|
| 49 |
-
}
|
| 50 |
-
param {
|
| 51 |
-
lr_mult: 2.0
|
| 52 |
-
decay_mult: 1.0
|
| 53 |
-
}
|
| 54 |
-
convolution_param {
|
| 55 |
-
num_output: 32
|
| 56 |
-
pad: 3
|
| 57 |
-
kernel_size: 7
|
| 58 |
-
stride: 2
|
| 59 |
-
weight_filler {
|
| 60 |
-
type: "msra"
|
| 61 |
-
variance_norm: FAN_OUT
|
| 62 |
-
}
|
| 63 |
-
bias_filler {
|
| 64 |
-
type: "constant"
|
| 65 |
-
value: 0.0
|
| 66 |
-
}
|
| 67 |
-
}
|
| 68 |
-
}
|
| 69 |
-
layer {
|
| 70 |
-
name: "conv1_bn_h"
|
| 71 |
-
type: "BatchNorm"
|
| 72 |
-
bottom: "conv1_h"
|
| 73 |
-
top: "conv1_h"
|
| 74 |
-
param {
|
| 75 |
-
lr_mult: 0.0
|
| 76 |
-
}
|
| 77 |
-
param {
|
| 78 |
-
lr_mult: 0.0
|
| 79 |
-
}
|
| 80 |
-
param {
|
| 81 |
-
lr_mult: 0.0
|
| 82 |
-
}
|
| 83 |
-
}
|
| 84 |
-
layer {
|
| 85 |
-
name: "conv1_scale_h"
|
| 86 |
-
type: "Scale"
|
| 87 |
-
bottom: "conv1_h"
|
| 88 |
-
top: "conv1_h"
|
| 89 |
-
param {
|
| 90 |
-
lr_mult: 1.0
|
| 91 |
-
decay_mult: 1.0
|
| 92 |
-
}
|
| 93 |
-
param {
|
| 94 |
-
lr_mult: 2.0
|
| 95 |
-
decay_mult: 1.0
|
| 96 |
-
}
|
| 97 |
-
scale_param {
|
| 98 |
-
bias_term: true
|
| 99 |
-
}
|
| 100 |
-
}
|
| 101 |
-
layer {
|
| 102 |
-
name: "conv1_relu"
|
| 103 |
-
type: "ReLU"
|
| 104 |
-
bottom: "conv1_h"
|
| 105 |
-
top: "conv1_h"
|
| 106 |
-
}
|
| 107 |
-
layer {
|
| 108 |
-
name: "conv1_pool"
|
| 109 |
-
type: "Pooling"
|
| 110 |
-
bottom: "conv1_h"
|
| 111 |
-
top: "conv1_pool"
|
| 112 |
-
pooling_param {
|
| 113 |
-
kernel_size: 3
|
| 114 |
-
stride: 2
|
| 115 |
-
}
|
| 116 |
-
}
|
| 117 |
-
layer {
|
| 118 |
-
name: "layer_64_1_conv1_h"
|
| 119 |
-
type: "Convolution"
|
| 120 |
-
bottom: "conv1_pool"
|
| 121 |
-
top: "layer_64_1_conv1_h"
|
| 122 |
-
param {
|
| 123 |
-
lr_mult: 1.0
|
| 124 |
-
decay_mult: 1.0
|
| 125 |
-
}
|
| 126 |
-
convolution_param {
|
| 127 |
-
num_output: 32
|
| 128 |
-
bias_term: false
|
| 129 |
-
pad: 1
|
| 130 |
-
kernel_size: 3
|
| 131 |
-
stride: 1
|
| 132 |
-
weight_filler {
|
| 133 |
-
type: "msra"
|
| 134 |
-
}
|
| 135 |
-
bias_filler {
|
| 136 |
-
type: "constant"
|
| 137 |
-
value: 0.0
|
| 138 |
-
}
|
| 139 |
-
}
|
| 140 |
-
}
|
| 141 |
-
layer {
|
| 142 |
-
name: "layer_64_1_bn2_h"
|
| 143 |
-
type: "BatchNorm"
|
| 144 |
-
bottom: "layer_64_1_conv1_h"
|
| 145 |
-
top: "layer_64_1_conv1_h"
|
| 146 |
-
param {
|
| 147 |
-
lr_mult: 0.0
|
| 148 |
-
}
|
| 149 |
-
param {
|
| 150 |
-
lr_mult: 0.0
|
| 151 |
-
}
|
| 152 |
-
param {
|
| 153 |
-
lr_mult: 0.0
|
| 154 |
-
}
|
| 155 |
-
}
|
| 156 |
-
layer {
|
| 157 |
-
name: "layer_64_1_scale2_h"
|
| 158 |
-
type: "Scale"
|
| 159 |
-
bottom: "layer_64_1_conv1_h"
|
| 160 |
-
top: "layer_64_1_conv1_h"
|
| 161 |
-
param {
|
| 162 |
-
lr_mult: 1.0
|
| 163 |
-
decay_mult: 1.0
|
| 164 |
-
}
|
| 165 |
-
param {
|
| 166 |
-
lr_mult: 2.0
|
| 167 |
-
decay_mult: 1.0
|
| 168 |
-
}
|
| 169 |
-
scale_param {
|
| 170 |
-
bias_term: true
|
| 171 |
-
}
|
| 172 |
-
}
|
| 173 |
-
layer {
|
| 174 |
-
name: "layer_64_1_relu2"
|
| 175 |
-
type: "ReLU"
|
| 176 |
-
bottom: "layer_64_1_conv1_h"
|
| 177 |
-
top: "layer_64_1_conv1_h"
|
| 178 |
-
}
|
| 179 |
-
layer {
|
| 180 |
-
name: "layer_64_1_conv2_h"
|
| 181 |
-
type: "Convolution"
|
| 182 |
-
bottom: "layer_64_1_conv1_h"
|
| 183 |
-
top: "layer_64_1_conv2_h"
|
| 184 |
-
param {
|
| 185 |
-
lr_mult: 1.0
|
| 186 |
-
decay_mult: 1.0
|
| 187 |
-
}
|
| 188 |
-
convolution_param {
|
| 189 |
-
num_output: 32
|
| 190 |
-
bias_term: false
|
| 191 |
-
pad: 1
|
| 192 |
-
kernel_size: 3
|
| 193 |
-
stride: 1
|
| 194 |
-
weight_filler {
|
| 195 |
-
type: "msra"
|
| 196 |
-
}
|
| 197 |
-
bias_filler {
|
| 198 |
-
type: "constant"
|
| 199 |
-
value: 0.0
|
| 200 |
-
}
|
| 201 |
-
}
|
| 202 |
-
}
|
| 203 |
-
layer {
|
| 204 |
-
name: "layer_64_1_sum"
|
| 205 |
-
type: "Eltwise"
|
| 206 |
-
bottom: "layer_64_1_conv2_h"
|
| 207 |
-
bottom: "conv1_pool"
|
| 208 |
-
top: "layer_64_1_sum"
|
| 209 |
-
}
|
| 210 |
-
layer {
|
| 211 |
-
name: "layer_128_1_bn1_h"
|
| 212 |
-
type: "BatchNorm"
|
| 213 |
-
bottom: "layer_64_1_sum"
|
| 214 |
-
top: "layer_128_1_bn1_h"
|
| 215 |
-
param {
|
| 216 |
-
lr_mult: 0.0
|
| 217 |
-
}
|
| 218 |
-
param {
|
| 219 |
-
lr_mult: 0.0
|
| 220 |
-
}
|
| 221 |
-
param {
|
| 222 |
-
lr_mult: 0.0
|
| 223 |
-
}
|
| 224 |
-
}
|
| 225 |
-
layer {
|
| 226 |
-
name: "layer_128_1_scale1_h"
|
| 227 |
-
type: "Scale"
|
| 228 |
-
bottom: "layer_128_1_bn1_h"
|
| 229 |
-
top: "layer_128_1_bn1_h"
|
| 230 |
-
param {
|
| 231 |
-
lr_mult: 1.0
|
| 232 |
-
decay_mult: 1.0
|
| 233 |
-
}
|
| 234 |
-
param {
|
| 235 |
-
lr_mult: 2.0
|
| 236 |
-
decay_mult: 1.0
|
| 237 |
-
}
|
| 238 |
-
scale_param {
|
| 239 |
-
bias_term: true
|
| 240 |
-
}
|
| 241 |
-
}
|
| 242 |
-
layer {
|
| 243 |
-
name: "layer_128_1_relu1"
|
| 244 |
-
type: "ReLU"
|
| 245 |
-
bottom: "layer_128_1_bn1_h"
|
| 246 |
-
top: "layer_128_1_bn1_h"
|
| 247 |
-
}
|
| 248 |
-
layer {
|
| 249 |
-
name: "layer_128_1_conv1_h"
|
| 250 |
-
type: "Convolution"
|
| 251 |
-
bottom: "layer_128_1_bn1_h"
|
| 252 |
-
top: "layer_128_1_conv1_h"
|
| 253 |
-
param {
|
| 254 |
-
lr_mult: 1.0
|
| 255 |
-
decay_mult: 1.0
|
| 256 |
-
}
|
| 257 |
-
convolution_param {
|
| 258 |
-
num_output: 128
|
| 259 |
-
bias_term: false
|
| 260 |
-
pad: 1
|
| 261 |
-
kernel_size: 3
|
| 262 |
-
stride: 2
|
| 263 |
-
weight_filler {
|
| 264 |
-
type: "msra"
|
| 265 |
-
}
|
| 266 |
-
bias_filler {
|
| 267 |
-
type: "constant"
|
| 268 |
-
value: 0.0
|
| 269 |
-
}
|
| 270 |
-
}
|
| 271 |
-
}
|
| 272 |
-
layer {
|
| 273 |
-
name: "layer_128_1_bn2"
|
| 274 |
-
type: "BatchNorm"
|
| 275 |
-
bottom: "layer_128_1_conv1_h"
|
| 276 |
-
top: "layer_128_1_conv1_h"
|
| 277 |
-
param {
|
| 278 |
-
lr_mult: 0.0
|
| 279 |
-
}
|
| 280 |
-
param {
|
| 281 |
-
lr_mult: 0.0
|
| 282 |
-
}
|
| 283 |
-
param {
|
| 284 |
-
lr_mult: 0.0
|
| 285 |
-
}
|
| 286 |
-
}
|
| 287 |
-
layer {
|
| 288 |
-
name: "layer_128_1_scale2"
|
| 289 |
-
type: "Scale"
|
| 290 |
-
bottom: "layer_128_1_conv1_h"
|
| 291 |
-
top: "layer_128_1_conv1_h"
|
| 292 |
-
param {
|
| 293 |
-
lr_mult: 1.0
|
| 294 |
-
decay_mult: 1.0
|
| 295 |
-
}
|
| 296 |
-
param {
|
| 297 |
-
lr_mult: 2.0
|
| 298 |
-
decay_mult: 1.0
|
| 299 |
-
}
|
| 300 |
-
scale_param {
|
| 301 |
-
bias_term: true
|
| 302 |
-
}
|
| 303 |
-
}
|
| 304 |
-
layer {
|
| 305 |
-
name: "layer_128_1_relu2"
|
| 306 |
-
type: "ReLU"
|
| 307 |
-
bottom: "layer_128_1_conv1_h"
|
| 308 |
-
top: "layer_128_1_conv1_h"
|
| 309 |
-
}
|
| 310 |
-
layer {
|
| 311 |
-
name: "layer_128_1_conv2"
|
| 312 |
-
type: "Convolution"
|
| 313 |
-
bottom: "layer_128_1_conv1_h"
|
| 314 |
-
top: "layer_128_1_conv2"
|
| 315 |
-
param {
|
| 316 |
-
lr_mult: 1.0
|
| 317 |
-
decay_mult: 1.0
|
| 318 |
-
}
|
| 319 |
-
convolution_param {
|
| 320 |
-
num_output: 128
|
| 321 |
-
bias_term: false
|
| 322 |
-
pad: 1
|
| 323 |
-
kernel_size: 3
|
| 324 |
-
stride: 1
|
| 325 |
-
weight_filler {
|
| 326 |
-
type: "msra"
|
| 327 |
-
}
|
| 328 |
-
bias_filler {
|
| 329 |
-
type: "constant"
|
| 330 |
-
value: 0.0
|
| 331 |
-
}
|
| 332 |
-
}
|
| 333 |
-
}
|
| 334 |
-
layer {
|
| 335 |
-
name: "layer_128_1_conv_expand_h"
|
| 336 |
-
type: "Convolution"
|
| 337 |
-
bottom: "layer_128_1_bn1_h"
|
| 338 |
-
top: "layer_128_1_conv_expand_h"
|
| 339 |
-
param {
|
| 340 |
-
lr_mult: 1.0
|
| 341 |
-
decay_mult: 1.0
|
| 342 |
-
}
|
| 343 |
-
convolution_param {
|
| 344 |
-
num_output: 128
|
| 345 |
-
bias_term: false
|
| 346 |
-
pad: 0
|
| 347 |
-
kernel_size: 1
|
| 348 |
-
stride: 2
|
| 349 |
-
weight_filler {
|
| 350 |
-
type: "msra"
|
| 351 |
-
}
|
| 352 |
-
bias_filler {
|
| 353 |
-
type: "constant"
|
| 354 |
-
value: 0.0
|
| 355 |
-
}
|
| 356 |
-
}
|
| 357 |
-
}
|
| 358 |
-
layer {
|
| 359 |
-
name: "layer_128_1_sum"
|
| 360 |
-
type: "Eltwise"
|
| 361 |
-
bottom: "layer_128_1_conv2"
|
| 362 |
-
bottom: "layer_128_1_conv_expand_h"
|
| 363 |
-
top: "layer_128_1_sum"
|
| 364 |
-
}
|
| 365 |
-
layer {
|
| 366 |
-
name: "layer_256_1_bn1"
|
| 367 |
-
type: "BatchNorm"
|
| 368 |
-
bottom: "layer_128_1_sum"
|
| 369 |
-
top: "layer_256_1_bn1"
|
| 370 |
-
param {
|
| 371 |
-
lr_mult: 0.0
|
| 372 |
-
}
|
| 373 |
-
param {
|
| 374 |
-
lr_mult: 0.0
|
| 375 |
-
}
|
| 376 |
-
param {
|
| 377 |
-
lr_mult: 0.0
|
| 378 |
-
}
|
| 379 |
-
}
|
| 380 |
-
layer {
|
| 381 |
-
name: "layer_256_1_scale1"
|
| 382 |
-
type: "Scale"
|
| 383 |
-
bottom: "layer_256_1_bn1"
|
| 384 |
-
top: "layer_256_1_bn1"
|
| 385 |
-
param {
|
| 386 |
-
lr_mult: 1.0
|
| 387 |
-
decay_mult: 1.0
|
| 388 |
-
}
|
| 389 |
-
param {
|
| 390 |
-
lr_mult: 2.0
|
| 391 |
-
decay_mult: 1.0
|
| 392 |
-
}
|
| 393 |
-
scale_param {
|
| 394 |
-
bias_term: true
|
| 395 |
-
}
|
| 396 |
-
}
|
| 397 |
-
layer {
|
| 398 |
-
name: "layer_256_1_relu1"
|
| 399 |
-
type: "ReLU"
|
| 400 |
-
bottom: "layer_256_1_bn1"
|
| 401 |
-
top: "layer_256_1_bn1"
|
| 402 |
-
}
|
| 403 |
-
layer {
|
| 404 |
-
name: "layer_256_1_conv1"
|
| 405 |
-
type: "Convolution"
|
| 406 |
-
bottom: "layer_256_1_bn1"
|
| 407 |
-
top: "layer_256_1_conv1"
|
| 408 |
-
param {
|
| 409 |
-
lr_mult: 1.0
|
| 410 |
-
decay_mult: 1.0
|
| 411 |
-
}
|
| 412 |
-
convolution_param {
|
| 413 |
-
num_output: 256
|
| 414 |
-
bias_term: false
|
| 415 |
-
pad: 1
|
| 416 |
-
kernel_size: 3
|
| 417 |
-
stride: 2
|
| 418 |
-
weight_filler {
|
| 419 |
-
type: "msra"
|
| 420 |
-
}
|
| 421 |
-
bias_filler {
|
| 422 |
-
type: "constant"
|
| 423 |
-
value: 0.0
|
| 424 |
-
}
|
| 425 |
-
}
|
| 426 |
-
}
|
| 427 |
-
layer {
|
| 428 |
-
name: "layer_256_1_bn2"
|
| 429 |
-
type: "BatchNorm"
|
| 430 |
-
bottom: "layer_256_1_conv1"
|
| 431 |
-
top: "layer_256_1_conv1"
|
| 432 |
-
param {
|
| 433 |
-
lr_mult: 0.0
|
| 434 |
-
}
|
| 435 |
-
param {
|
| 436 |
-
lr_mult: 0.0
|
| 437 |
-
}
|
| 438 |
-
param {
|
| 439 |
-
lr_mult: 0.0
|
| 440 |
-
}
|
| 441 |
-
}
|
| 442 |
-
layer {
|
| 443 |
-
name: "layer_256_1_scale2"
|
| 444 |
-
type: "Scale"
|
| 445 |
-
bottom: "layer_256_1_conv1"
|
| 446 |
-
top: "layer_256_1_conv1"
|
| 447 |
-
param {
|
| 448 |
-
lr_mult: 1.0
|
| 449 |
-
decay_mult: 1.0
|
| 450 |
-
}
|
| 451 |
-
param {
|
| 452 |
-
lr_mult: 2.0
|
| 453 |
-
decay_mult: 1.0
|
| 454 |
-
}
|
| 455 |
-
scale_param {
|
| 456 |
-
bias_term: true
|
| 457 |
-
}
|
| 458 |
-
}
|
| 459 |
-
layer {
|
| 460 |
-
name: "layer_256_1_relu2"
|
| 461 |
-
type: "ReLU"
|
| 462 |
-
bottom: "layer_256_1_conv1"
|
| 463 |
-
top: "layer_256_1_conv1"
|
| 464 |
-
}
|
| 465 |
-
layer {
|
| 466 |
-
name: "layer_256_1_conv2"
|
| 467 |
-
type: "Convolution"
|
| 468 |
-
bottom: "layer_256_1_conv1"
|
| 469 |
-
top: "layer_256_1_conv2"
|
| 470 |
-
param {
|
| 471 |
-
lr_mult: 1.0
|
| 472 |
-
decay_mult: 1.0
|
| 473 |
-
}
|
| 474 |
-
convolution_param {
|
| 475 |
-
num_output: 256
|
| 476 |
-
bias_term: false
|
| 477 |
-
pad: 1
|
| 478 |
-
kernel_size: 3
|
| 479 |
-
stride: 1
|
| 480 |
-
weight_filler {
|
| 481 |
-
type: "msra"
|
| 482 |
-
}
|
| 483 |
-
bias_filler {
|
| 484 |
-
type: "constant"
|
| 485 |
-
value: 0.0
|
| 486 |
-
}
|
| 487 |
-
}
|
| 488 |
-
}
|
| 489 |
-
layer {
|
| 490 |
-
name: "layer_256_1_conv_expand"
|
| 491 |
-
type: "Convolution"
|
| 492 |
-
bottom: "layer_256_1_bn1"
|
| 493 |
-
top: "layer_256_1_conv_expand"
|
| 494 |
-
param {
|
| 495 |
-
lr_mult: 1.0
|
| 496 |
-
decay_mult: 1.0
|
| 497 |
-
}
|
| 498 |
-
convolution_param {
|
| 499 |
-
num_output: 256
|
| 500 |
-
bias_term: false
|
| 501 |
-
pad: 0
|
| 502 |
-
kernel_size: 1
|
| 503 |
-
stride: 2
|
| 504 |
-
weight_filler {
|
| 505 |
-
type: "msra"
|
| 506 |
-
}
|
| 507 |
-
bias_filler {
|
| 508 |
-
type: "constant"
|
| 509 |
-
value: 0.0
|
| 510 |
-
}
|
| 511 |
-
}
|
| 512 |
-
}
|
| 513 |
-
layer {
|
| 514 |
-
name: "layer_256_1_sum"
|
| 515 |
-
type: "Eltwise"
|
| 516 |
-
bottom: "layer_256_1_conv2"
|
| 517 |
-
bottom: "layer_256_1_conv_expand"
|
| 518 |
-
top: "layer_256_1_sum"
|
| 519 |
-
}
|
| 520 |
-
layer {
|
| 521 |
-
name: "layer_512_1_bn1"
|
| 522 |
-
type: "BatchNorm"
|
| 523 |
-
bottom: "layer_256_1_sum"
|
| 524 |
-
top: "layer_512_1_bn1"
|
| 525 |
-
param {
|
| 526 |
-
lr_mult: 0.0
|
| 527 |
-
}
|
| 528 |
-
param {
|
| 529 |
-
lr_mult: 0.0
|
| 530 |
-
}
|
| 531 |
-
param {
|
| 532 |
-
lr_mult: 0.0
|
| 533 |
-
}
|
| 534 |
-
}
|
| 535 |
-
layer {
|
| 536 |
-
name: "layer_512_1_scale1"
|
| 537 |
-
type: "Scale"
|
| 538 |
-
bottom: "layer_512_1_bn1"
|
| 539 |
-
top: "layer_512_1_bn1"
|
| 540 |
-
param {
|
| 541 |
-
lr_mult: 1.0
|
| 542 |
-
decay_mult: 1.0
|
| 543 |
-
}
|
| 544 |
-
param {
|
| 545 |
-
lr_mult: 2.0
|
| 546 |
-
decay_mult: 1.0
|
| 547 |
-
}
|
| 548 |
-
scale_param {
|
| 549 |
-
bias_term: true
|
| 550 |
-
}
|
| 551 |
-
}
|
| 552 |
-
layer {
|
| 553 |
-
name: "layer_512_1_relu1"
|
| 554 |
-
type: "ReLU"
|
| 555 |
-
bottom: "layer_512_1_bn1"
|
| 556 |
-
top: "layer_512_1_bn1"
|
| 557 |
-
}
|
| 558 |
-
layer {
|
| 559 |
-
name: "layer_512_1_conv1_h"
|
| 560 |
-
type: "Convolution"
|
| 561 |
-
bottom: "layer_512_1_bn1"
|
| 562 |
-
top: "layer_512_1_conv1_h"
|
| 563 |
-
param {
|
| 564 |
-
lr_mult: 1.0
|
| 565 |
-
decay_mult: 1.0
|
| 566 |
-
}
|
| 567 |
-
convolution_param {
|
| 568 |
-
num_output: 128
|
| 569 |
-
bias_term: false
|
| 570 |
-
pad: 1
|
| 571 |
-
kernel_size: 3
|
| 572 |
-
stride: 1 # 2
|
| 573 |
-
weight_filler {
|
| 574 |
-
type: "msra"
|
| 575 |
-
}
|
| 576 |
-
bias_filler {
|
| 577 |
-
type: "constant"
|
| 578 |
-
value: 0.0
|
| 579 |
-
}
|
| 580 |
-
}
|
| 581 |
-
}
|
| 582 |
-
layer {
|
| 583 |
-
name: "layer_512_1_bn2_h"
|
| 584 |
-
type: "BatchNorm"
|
| 585 |
-
bottom: "layer_512_1_conv1_h"
|
| 586 |
-
top: "layer_512_1_conv1_h"
|
| 587 |
-
param {
|
| 588 |
-
lr_mult: 0.0
|
| 589 |
-
}
|
| 590 |
-
param {
|
| 591 |
-
lr_mult: 0.0
|
| 592 |
-
}
|
| 593 |
-
param {
|
| 594 |
-
lr_mult: 0.0
|
| 595 |
-
}
|
| 596 |
-
}
|
| 597 |
-
layer {
|
| 598 |
-
name: "layer_512_1_scale2_h"
|
| 599 |
-
type: "Scale"
|
| 600 |
-
bottom: "layer_512_1_conv1_h"
|
| 601 |
-
top: "layer_512_1_conv1_h"
|
| 602 |
-
param {
|
| 603 |
-
lr_mult: 1.0
|
| 604 |
-
decay_mult: 1.0
|
| 605 |
-
}
|
| 606 |
-
param {
|
| 607 |
-
lr_mult: 2.0
|
| 608 |
-
decay_mult: 1.0
|
| 609 |
-
}
|
| 610 |
-
scale_param {
|
| 611 |
-
bias_term: true
|
| 612 |
-
}
|
| 613 |
-
}
|
| 614 |
-
layer {
|
| 615 |
-
name: "layer_512_1_relu2"
|
| 616 |
-
type: "ReLU"
|
| 617 |
-
bottom: "layer_512_1_conv1_h"
|
| 618 |
-
top: "layer_512_1_conv1_h"
|
| 619 |
-
}
|
| 620 |
-
layer {
|
| 621 |
-
name: "layer_512_1_conv2_h"
|
| 622 |
-
type: "Convolution"
|
| 623 |
-
bottom: "layer_512_1_conv1_h"
|
| 624 |
-
top: "layer_512_1_conv2_h"
|
| 625 |
-
param {
|
| 626 |
-
lr_mult: 1.0
|
| 627 |
-
decay_mult: 1.0
|
| 628 |
-
}
|
| 629 |
-
convolution_param {
|
| 630 |
-
num_output: 256
|
| 631 |
-
bias_term: false
|
| 632 |
-
pad: 2 # 1
|
| 633 |
-
kernel_size: 3
|
| 634 |
-
stride: 1
|
| 635 |
-
dilation: 2
|
| 636 |
-
weight_filler {
|
| 637 |
-
type: "msra"
|
| 638 |
-
}
|
| 639 |
-
bias_filler {
|
| 640 |
-
type: "constant"
|
| 641 |
-
value: 0.0
|
| 642 |
-
}
|
| 643 |
-
}
|
| 644 |
-
}
|
| 645 |
-
layer {
|
| 646 |
-
name: "layer_512_1_conv_expand_h"
|
| 647 |
-
type: "Convolution"
|
| 648 |
-
bottom: "layer_512_1_bn1"
|
| 649 |
-
top: "layer_512_1_conv_expand_h"
|
| 650 |
-
param {
|
| 651 |
-
lr_mult: 1.0
|
| 652 |
-
decay_mult: 1.0
|
| 653 |
-
}
|
| 654 |
-
convolution_param {
|
| 655 |
-
num_output: 256
|
| 656 |
-
bias_term: false
|
| 657 |
-
pad: 0
|
| 658 |
-
kernel_size: 1
|
| 659 |
-
stride: 1 # 2
|
| 660 |
-
weight_filler {
|
| 661 |
-
type: "msra"
|
| 662 |
-
}
|
| 663 |
-
bias_filler {
|
| 664 |
-
type: "constant"
|
| 665 |
-
value: 0.0
|
| 666 |
-
}
|
| 667 |
-
}
|
| 668 |
-
}
|
| 669 |
-
layer {
|
| 670 |
-
name: "layer_512_1_sum"
|
| 671 |
-
type: "Eltwise"
|
| 672 |
-
bottom: "layer_512_1_conv2_h"
|
| 673 |
-
bottom: "layer_512_1_conv_expand_h"
|
| 674 |
-
top: "layer_512_1_sum"
|
| 675 |
-
}
|
| 676 |
-
layer {
|
| 677 |
-
name: "last_bn_h"
|
| 678 |
-
type: "BatchNorm"
|
| 679 |
-
bottom: "layer_512_1_sum"
|
| 680 |
-
top: "layer_512_1_sum"
|
| 681 |
-
param {
|
| 682 |
-
lr_mult: 0.0
|
| 683 |
-
}
|
| 684 |
-
param {
|
| 685 |
-
lr_mult: 0.0
|
| 686 |
-
}
|
| 687 |
-
param {
|
| 688 |
-
lr_mult: 0.0
|
| 689 |
-
}
|
| 690 |
-
}
|
| 691 |
-
layer {
|
| 692 |
-
name: "last_scale_h"
|
| 693 |
-
type: "Scale"
|
| 694 |
-
bottom: "layer_512_1_sum"
|
| 695 |
-
top: "layer_512_1_sum"
|
| 696 |
-
param {
|
| 697 |
-
lr_mult: 1.0
|
| 698 |
-
decay_mult: 1.0
|
| 699 |
-
}
|
| 700 |
-
param {
|
| 701 |
-
lr_mult: 2.0
|
| 702 |
-
decay_mult: 1.0
|
| 703 |
-
}
|
| 704 |
-
scale_param {
|
| 705 |
-
bias_term: true
|
| 706 |
-
}
|
| 707 |
-
}
|
| 708 |
-
layer {
|
| 709 |
-
name: "last_relu"
|
| 710 |
-
type: "ReLU"
|
| 711 |
-
bottom: "layer_512_1_sum"
|
| 712 |
-
top: "fc7"
|
| 713 |
-
}
|
| 714 |
-
|
| 715 |
-
layer {
|
| 716 |
-
name: "conv6_1_h"
|
| 717 |
-
type: "Convolution"
|
| 718 |
-
bottom: "fc7"
|
| 719 |
-
top: "conv6_1_h"
|
| 720 |
-
param {
|
| 721 |
-
lr_mult: 1
|
| 722 |
-
decay_mult: 1
|
| 723 |
-
}
|
| 724 |
-
param {
|
| 725 |
-
lr_mult: 2
|
| 726 |
-
decay_mult: 0
|
| 727 |
-
}
|
| 728 |
-
convolution_param {
|
| 729 |
-
num_output: 128
|
| 730 |
-
pad: 0
|
| 731 |
-
kernel_size: 1
|
| 732 |
-
stride: 1
|
| 733 |
-
weight_filler {
|
| 734 |
-
type: "xavier"
|
| 735 |
-
}
|
| 736 |
-
bias_filler {
|
| 737 |
-
type: "constant"
|
| 738 |
-
value: 0
|
| 739 |
-
}
|
| 740 |
-
}
|
| 741 |
-
}
|
| 742 |
-
layer {
|
| 743 |
-
name: "conv6_1_relu"
|
| 744 |
-
type: "ReLU"
|
| 745 |
-
bottom: "conv6_1_h"
|
| 746 |
-
top: "conv6_1_h"
|
| 747 |
-
}
|
| 748 |
-
layer {
|
| 749 |
-
name: "conv6_2_h"
|
| 750 |
-
type: "Convolution"
|
| 751 |
-
bottom: "conv6_1_h"
|
| 752 |
-
top: "conv6_2_h"
|
| 753 |
-
param {
|
| 754 |
-
lr_mult: 1
|
| 755 |
-
decay_mult: 1
|
| 756 |
-
}
|
| 757 |
-
param {
|
| 758 |
-
lr_mult: 2
|
| 759 |
-
decay_mult: 0
|
| 760 |
-
}
|
| 761 |
-
convolution_param {
|
| 762 |
-
num_output: 256
|
| 763 |
-
pad: 1
|
| 764 |
-
kernel_size: 3
|
| 765 |
-
stride: 2
|
| 766 |
-
weight_filler {
|
| 767 |
-
type: "xavier"
|
| 768 |
-
}
|
| 769 |
-
bias_filler {
|
| 770 |
-
type: "constant"
|
| 771 |
-
value: 0
|
| 772 |
-
}
|
| 773 |
-
}
|
| 774 |
-
}
|
| 775 |
-
layer {
|
| 776 |
-
name: "conv6_2_relu"
|
| 777 |
-
type: "ReLU"
|
| 778 |
-
bottom: "conv6_2_h"
|
| 779 |
-
top: "conv6_2_h"
|
| 780 |
-
}
|
| 781 |
-
layer {
|
| 782 |
-
name: "conv7_1_h"
|
| 783 |
-
type: "Convolution"
|
| 784 |
-
bottom: "conv6_2_h"
|
| 785 |
-
top: "conv7_1_h"
|
| 786 |
-
param {
|
| 787 |
-
lr_mult: 1
|
| 788 |
-
decay_mult: 1
|
| 789 |
-
}
|
| 790 |
-
param {
|
| 791 |
-
lr_mult: 2
|
| 792 |
-
decay_mult: 0
|
| 793 |
-
}
|
| 794 |
-
convolution_param {
|
| 795 |
-
num_output: 64
|
| 796 |
-
pad: 0
|
| 797 |
-
kernel_size: 1
|
| 798 |
-
stride: 1
|
| 799 |
-
weight_filler {
|
| 800 |
-
type: "xavier"
|
| 801 |
-
}
|
| 802 |
-
bias_filler {
|
| 803 |
-
type: "constant"
|
| 804 |
-
value: 0
|
| 805 |
-
}
|
| 806 |
-
}
|
| 807 |
-
}
|
| 808 |
-
layer {
|
| 809 |
-
name: "conv7_1_relu"
|
| 810 |
-
type: "ReLU"
|
| 811 |
-
bottom: "conv7_1_h"
|
| 812 |
-
top: "conv7_1_h"
|
| 813 |
-
}
|
| 814 |
-
layer {
|
| 815 |
-
name: "conv7_2_h"
|
| 816 |
-
type: "Convolution"
|
| 817 |
-
bottom: "conv7_1_h"
|
| 818 |
-
top: "conv7_2_h"
|
| 819 |
-
param {
|
| 820 |
-
lr_mult: 1
|
| 821 |
-
decay_mult: 1
|
| 822 |
-
}
|
| 823 |
-
param {
|
| 824 |
-
lr_mult: 2
|
| 825 |
-
decay_mult: 0
|
| 826 |
-
}
|
| 827 |
-
convolution_param {
|
| 828 |
-
num_output: 128
|
| 829 |
-
pad: 1
|
| 830 |
-
kernel_size: 3
|
| 831 |
-
stride: 2
|
| 832 |
-
weight_filler {
|
| 833 |
-
type: "xavier"
|
| 834 |
-
}
|
| 835 |
-
bias_filler {
|
| 836 |
-
type: "constant"
|
| 837 |
-
value: 0
|
| 838 |
-
}
|
| 839 |
-
}
|
| 840 |
-
}
|
| 841 |
-
layer {
|
| 842 |
-
name: "conv7_2_relu"
|
| 843 |
-
type: "ReLU"
|
| 844 |
-
bottom: "conv7_2_h"
|
| 845 |
-
top: "conv7_2_h"
|
| 846 |
-
}
|
| 847 |
-
layer {
|
| 848 |
-
name: "conv8_1_h"
|
| 849 |
-
type: "Convolution"
|
| 850 |
-
bottom: "conv7_2_h"
|
| 851 |
-
top: "conv8_1_h"
|
| 852 |
-
param {
|
| 853 |
-
lr_mult: 1
|
| 854 |
-
decay_mult: 1
|
| 855 |
-
}
|
| 856 |
-
param {
|
| 857 |
-
lr_mult: 2
|
| 858 |
-
decay_mult: 0
|
| 859 |
-
}
|
| 860 |
-
convolution_param {
|
| 861 |
-
num_output: 64
|
| 862 |
-
pad: 0
|
| 863 |
-
kernel_size: 1
|
| 864 |
-
stride: 1
|
| 865 |
-
weight_filler {
|
| 866 |
-
type: "xavier"
|
| 867 |
-
}
|
| 868 |
-
bias_filler {
|
| 869 |
-
type: "constant"
|
| 870 |
-
value: 0
|
| 871 |
-
}
|
| 872 |
-
}
|
| 873 |
-
}
|
| 874 |
-
layer {
|
| 875 |
-
name: "conv8_1_relu"
|
| 876 |
-
type: "ReLU"
|
| 877 |
-
bottom: "conv8_1_h"
|
| 878 |
-
top: "conv8_1_h"
|
| 879 |
-
}
|
| 880 |
-
layer {
|
| 881 |
-
name: "conv8_2_h"
|
| 882 |
-
type: "Convolution"
|
| 883 |
-
bottom: "conv8_1_h"
|
| 884 |
-
top: "conv8_2_h"
|
| 885 |
-
param {
|
| 886 |
-
lr_mult: 1
|
| 887 |
-
decay_mult: 1
|
| 888 |
-
}
|
| 889 |
-
param {
|
| 890 |
-
lr_mult: 2
|
| 891 |
-
decay_mult: 0
|
| 892 |
-
}
|
| 893 |
-
convolution_param {
|
| 894 |
-
num_output: 128
|
| 895 |
-
pad: 1
|
| 896 |
-
kernel_size: 3
|
| 897 |
-
stride: 1
|
| 898 |
-
weight_filler {
|
| 899 |
-
type: "xavier"
|
| 900 |
-
}
|
| 901 |
-
bias_filler {
|
| 902 |
-
type: "constant"
|
| 903 |
-
value: 0
|
| 904 |
-
}
|
| 905 |
-
}
|
| 906 |
-
}
|
| 907 |
-
layer {
|
| 908 |
-
name: "conv8_2_relu"
|
| 909 |
-
type: "ReLU"
|
| 910 |
-
bottom: "conv8_2_h"
|
| 911 |
-
top: "conv8_2_h"
|
| 912 |
-
}
|
| 913 |
-
layer {
|
| 914 |
-
name: "conv9_1_h"
|
| 915 |
-
type: "Convolution"
|
| 916 |
-
bottom: "conv8_2_h"
|
| 917 |
-
top: "conv9_1_h"
|
| 918 |
-
param {
|
| 919 |
-
lr_mult: 1
|
| 920 |
-
decay_mult: 1
|
| 921 |
-
}
|
| 922 |
-
param {
|
| 923 |
-
lr_mult: 2
|
| 924 |
-
decay_mult: 0
|
| 925 |
-
}
|
| 926 |
-
convolution_param {
|
| 927 |
-
num_output: 64
|
| 928 |
-
pad: 0
|
| 929 |
-
kernel_size: 1
|
| 930 |
-
stride: 1
|
| 931 |
-
weight_filler {
|
| 932 |
-
type: "xavier"
|
| 933 |
-
}
|
| 934 |
-
bias_filler {
|
| 935 |
-
type: "constant"
|
| 936 |
-
value: 0
|
| 937 |
-
}
|
| 938 |
-
}
|
| 939 |
-
}
|
| 940 |
-
layer {
|
| 941 |
-
name: "conv9_1_relu"
|
| 942 |
-
type: "ReLU"
|
| 943 |
-
bottom: "conv9_1_h"
|
| 944 |
-
top: "conv9_1_h"
|
| 945 |
-
}
|
| 946 |
-
layer {
|
| 947 |
-
name: "conv9_2_h"
|
| 948 |
-
type: "Convolution"
|
| 949 |
-
bottom: "conv9_1_h"
|
| 950 |
-
top: "conv9_2_h"
|
| 951 |
-
param {
|
| 952 |
-
lr_mult: 1
|
| 953 |
-
decay_mult: 1
|
| 954 |
-
}
|
| 955 |
-
param {
|
| 956 |
-
lr_mult: 2
|
| 957 |
-
decay_mult: 0
|
| 958 |
-
}
|
| 959 |
-
convolution_param {
|
| 960 |
-
num_output: 128
|
| 961 |
-
pad: 1
|
| 962 |
-
kernel_size: 3
|
| 963 |
-
stride: 1
|
| 964 |
-
weight_filler {
|
| 965 |
-
type: "xavier"
|
| 966 |
-
}
|
| 967 |
-
bias_filler {
|
| 968 |
-
type: "constant"
|
| 969 |
-
value: 0
|
| 970 |
-
}
|
| 971 |
-
}
|
| 972 |
-
}
|
| 973 |
-
layer {
|
| 974 |
-
name: "conv9_2_relu"
|
| 975 |
-
type: "ReLU"
|
| 976 |
-
bottom: "conv9_2_h"
|
| 977 |
-
top: "conv9_2_h"
|
| 978 |
-
}
|
| 979 |
-
layer {
|
| 980 |
-
name: "conv4_3_norm"
|
| 981 |
-
type: "Normalize"
|
| 982 |
-
bottom: "layer_256_1_bn1"
|
| 983 |
-
top: "conv4_3_norm"
|
| 984 |
-
norm_param {
|
| 985 |
-
across_spatial: false
|
| 986 |
-
scale_filler {
|
| 987 |
-
type: "constant"
|
| 988 |
-
value: 20
|
| 989 |
-
}
|
| 990 |
-
channel_shared: false
|
| 991 |
-
}
|
| 992 |
-
}
|
| 993 |
-
layer {
|
| 994 |
-
name: "conv4_3_norm_mbox_loc"
|
| 995 |
-
type: "Convolution"
|
| 996 |
-
bottom: "conv4_3_norm"
|
| 997 |
-
top: "conv4_3_norm_mbox_loc"
|
| 998 |
-
param {
|
| 999 |
-
lr_mult: 1
|
| 1000 |
-
decay_mult: 1
|
| 1001 |
-
}
|
| 1002 |
-
param {
|
| 1003 |
-
lr_mult: 2
|
| 1004 |
-
decay_mult: 0
|
| 1005 |
-
}
|
| 1006 |
-
convolution_param {
|
| 1007 |
-
num_output: 16
|
| 1008 |
-
pad: 1
|
| 1009 |
-
kernel_size: 3
|
| 1010 |
-
stride: 1
|
| 1011 |
-
weight_filler {
|
| 1012 |
-
type: "xavier"
|
| 1013 |
-
}
|
| 1014 |
-
bias_filler {
|
| 1015 |
-
type: "constant"
|
| 1016 |
-
value: 0
|
| 1017 |
-
}
|
| 1018 |
-
}
|
| 1019 |
-
}
|
| 1020 |
-
layer {
|
| 1021 |
-
name: "conv4_3_norm_mbox_loc_perm"
|
| 1022 |
-
type: "Permute"
|
| 1023 |
-
bottom: "conv4_3_norm_mbox_loc"
|
| 1024 |
-
top: "conv4_3_norm_mbox_loc_perm"
|
| 1025 |
-
permute_param {
|
| 1026 |
-
order: 0
|
| 1027 |
-
order: 2
|
| 1028 |
-
order: 3
|
| 1029 |
-
order: 1
|
| 1030 |
-
}
|
| 1031 |
-
}
|
| 1032 |
-
layer {
|
| 1033 |
-
name: "conv4_3_norm_mbox_loc_flat"
|
| 1034 |
-
type: "Flatten"
|
| 1035 |
-
bottom: "conv4_3_norm_mbox_loc_perm"
|
| 1036 |
-
top: "conv4_3_norm_mbox_loc_flat"
|
| 1037 |
-
flatten_param {
|
| 1038 |
-
axis: 1
|
| 1039 |
-
}
|
| 1040 |
-
}
|
| 1041 |
-
layer {
|
| 1042 |
-
name: "conv4_3_norm_mbox_conf"
|
| 1043 |
-
type: "Convolution"
|
| 1044 |
-
bottom: "conv4_3_norm"
|
| 1045 |
-
top: "conv4_3_norm_mbox_conf"
|
| 1046 |
-
param {
|
| 1047 |
-
lr_mult: 1
|
| 1048 |
-
decay_mult: 1
|
| 1049 |
-
}
|
| 1050 |
-
param {
|
| 1051 |
-
lr_mult: 2
|
| 1052 |
-
decay_mult: 0
|
| 1053 |
-
}
|
| 1054 |
-
convolution_param {
|
| 1055 |
-
num_output: 8 # 84
|
| 1056 |
-
pad: 1
|
| 1057 |
-
kernel_size: 3
|
| 1058 |
-
stride: 1
|
| 1059 |
-
weight_filler {
|
| 1060 |
-
type: "xavier"
|
| 1061 |
-
}
|
| 1062 |
-
bias_filler {
|
| 1063 |
-
type: "constant"
|
| 1064 |
-
value: 0
|
| 1065 |
-
}
|
| 1066 |
-
}
|
| 1067 |
-
}
|
| 1068 |
-
layer {
|
| 1069 |
-
name: "conv4_3_norm_mbox_conf_perm"
|
| 1070 |
-
type: "Permute"
|
| 1071 |
-
bottom: "conv4_3_norm_mbox_conf"
|
| 1072 |
-
top: "conv4_3_norm_mbox_conf_perm"
|
| 1073 |
-
permute_param {
|
| 1074 |
-
order: 0
|
| 1075 |
-
order: 2
|
| 1076 |
-
order: 3
|
| 1077 |
-
order: 1
|
| 1078 |
-
}
|
| 1079 |
-
}
|
| 1080 |
-
layer {
|
| 1081 |
-
name: "conv4_3_norm_mbox_conf_flat"
|
| 1082 |
-
type: "Flatten"
|
| 1083 |
-
bottom: "conv4_3_norm_mbox_conf_perm"
|
| 1084 |
-
top: "conv4_3_norm_mbox_conf_flat"
|
| 1085 |
-
flatten_param {
|
| 1086 |
-
axis: 1
|
| 1087 |
-
}
|
| 1088 |
-
}
|
| 1089 |
-
layer {
|
| 1090 |
-
name: "conv4_3_norm_mbox_priorbox"
|
| 1091 |
-
type: "PriorBox"
|
| 1092 |
-
bottom: "conv4_3_norm"
|
| 1093 |
-
bottom: "data"
|
| 1094 |
-
top: "conv4_3_norm_mbox_priorbox"
|
| 1095 |
-
prior_box_param {
|
| 1096 |
-
min_size: 30.0
|
| 1097 |
-
max_size: 60.0
|
| 1098 |
-
aspect_ratio: 2
|
| 1099 |
-
flip: true
|
| 1100 |
-
clip: false
|
| 1101 |
-
variance: 0.1
|
| 1102 |
-
variance: 0.1
|
| 1103 |
-
variance: 0.2
|
| 1104 |
-
variance: 0.2
|
| 1105 |
-
step: 8
|
| 1106 |
-
offset: 0.5
|
| 1107 |
-
}
|
| 1108 |
-
}
|
| 1109 |
-
layer {
|
| 1110 |
-
name: "fc7_mbox_loc"
|
| 1111 |
-
type: "Convolution"
|
| 1112 |
-
bottom: "fc7"
|
| 1113 |
-
top: "fc7_mbox_loc"
|
| 1114 |
-
param {
|
| 1115 |
-
lr_mult: 1
|
| 1116 |
-
decay_mult: 1
|
| 1117 |
-
}
|
| 1118 |
-
param {
|
| 1119 |
-
lr_mult: 2
|
| 1120 |
-
decay_mult: 0
|
| 1121 |
-
}
|
| 1122 |
-
convolution_param {
|
| 1123 |
-
num_output: 24
|
| 1124 |
-
pad: 1
|
| 1125 |
-
kernel_size: 3
|
| 1126 |
-
stride: 1
|
| 1127 |
-
weight_filler {
|
| 1128 |
-
type: "xavier"
|
| 1129 |
-
}
|
| 1130 |
-
bias_filler {
|
| 1131 |
-
type: "constant"
|
| 1132 |
-
value: 0
|
| 1133 |
-
}
|
| 1134 |
-
}
|
| 1135 |
-
}
|
| 1136 |
-
layer {
|
| 1137 |
-
name: "fc7_mbox_loc_perm"
|
| 1138 |
-
type: "Permute"
|
| 1139 |
-
bottom: "fc7_mbox_loc"
|
| 1140 |
-
top: "fc7_mbox_loc_perm"
|
| 1141 |
-
permute_param {
|
| 1142 |
-
order: 0
|
| 1143 |
-
order: 2
|
| 1144 |
-
order: 3
|
| 1145 |
-
order: 1
|
| 1146 |
-
}
|
| 1147 |
-
}
|
| 1148 |
-
layer {
|
| 1149 |
-
name: "fc7_mbox_loc_flat"
|
| 1150 |
-
type: "Flatten"
|
| 1151 |
-
bottom: "fc7_mbox_loc_perm"
|
| 1152 |
-
top: "fc7_mbox_loc_flat"
|
| 1153 |
-
flatten_param {
|
| 1154 |
-
axis: 1
|
| 1155 |
-
}
|
| 1156 |
-
}
|
| 1157 |
-
layer {
|
| 1158 |
-
name: "fc7_mbox_conf"
|
| 1159 |
-
type: "Convolution"
|
| 1160 |
-
bottom: "fc7"
|
| 1161 |
-
top: "fc7_mbox_conf"
|
| 1162 |
-
param {
|
| 1163 |
-
lr_mult: 1
|
| 1164 |
-
decay_mult: 1
|
| 1165 |
-
}
|
| 1166 |
-
param {
|
| 1167 |
-
lr_mult: 2
|
| 1168 |
-
decay_mult: 0
|
| 1169 |
-
}
|
| 1170 |
-
convolution_param {
|
| 1171 |
-
num_output: 12 # 126
|
| 1172 |
-
pad: 1
|
| 1173 |
-
kernel_size: 3
|
| 1174 |
-
stride: 1
|
| 1175 |
-
weight_filler {
|
| 1176 |
-
type: "xavier"
|
| 1177 |
-
}
|
| 1178 |
-
bias_filler {
|
| 1179 |
-
type: "constant"
|
| 1180 |
-
value: 0
|
| 1181 |
-
}
|
| 1182 |
-
}
|
| 1183 |
-
}
|
| 1184 |
-
layer {
|
| 1185 |
-
name: "fc7_mbox_conf_perm"
|
| 1186 |
-
type: "Permute"
|
| 1187 |
-
bottom: "fc7_mbox_conf"
|
| 1188 |
-
top: "fc7_mbox_conf_perm"
|
| 1189 |
-
permute_param {
|
| 1190 |
-
order: 0
|
| 1191 |
-
order: 2
|
| 1192 |
-
order: 3
|
| 1193 |
-
order: 1
|
| 1194 |
-
}
|
| 1195 |
-
}
|
| 1196 |
-
layer {
|
| 1197 |
-
name: "fc7_mbox_conf_flat"
|
| 1198 |
-
type: "Flatten"
|
| 1199 |
-
bottom: "fc7_mbox_conf_perm"
|
| 1200 |
-
top: "fc7_mbox_conf_flat"
|
| 1201 |
-
flatten_param {
|
| 1202 |
-
axis: 1
|
| 1203 |
-
}
|
| 1204 |
-
}
|
| 1205 |
-
layer {
|
| 1206 |
-
name: "fc7_mbox_priorbox"
|
| 1207 |
-
type: "PriorBox"
|
| 1208 |
-
bottom: "fc7"
|
| 1209 |
-
bottom: "data"
|
| 1210 |
-
top: "fc7_mbox_priorbox"
|
| 1211 |
-
prior_box_param {
|
| 1212 |
-
min_size: 60.0
|
| 1213 |
-
max_size: 111.0
|
| 1214 |
-
aspect_ratio: 2
|
| 1215 |
-
aspect_ratio: 3
|
| 1216 |
-
flip: true
|
| 1217 |
-
clip: false
|
| 1218 |
-
variance: 0.1
|
| 1219 |
-
variance: 0.1
|
| 1220 |
-
variance: 0.2
|
| 1221 |
-
variance: 0.2
|
| 1222 |
-
step: 16
|
| 1223 |
-
offset: 0.5
|
| 1224 |
-
}
|
| 1225 |
-
}
|
| 1226 |
-
layer {
|
| 1227 |
-
name: "conv6_2_mbox_loc"
|
| 1228 |
-
type: "Convolution"
|
| 1229 |
-
bottom: "conv6_2_h"
|
| 1230 |
-
top: "conv6_2_mbox_loc"
|
| 1231 |
-
param {
|
| 1232 |
-
lr_mult: 1
|
| 1233 |
-
decay_mult: 1
|
| 1234 |
-
}
|
| 1235 |
-
param {
|
| 1236 |
-
lr_mult: 2
|
| 1237 |
-
decay_mult: 0
|
| 1238 |
-
}
|
| 1239 |
-
convolution_param {
|
| 1240 |
-
num_output: 24
|
| 1241 |
-
pad: 1
|
| 1242 |
-
kernel_size: 3
|
| 1243 |
-
stride: 1
|
| 1244 |
-
weight_filler {
|
| 1245 |
-
type: "xavier"
|
| 1246 |
-
}
|
| 1247 |
-
bias_filler {
|
| 1248 |
-
type: "constant"
|
| 1249 |
-
value: 0
|
| 1250 |
-
}
|
| 1251 |
-
}
|
| 1252 |
-
}
|
| 1253 |
-
layer {
|
| 1254 |
-
name: "conv6_2_mbox_loc_perm"
|
| 1255 |
-
type: "Permute"
|
| 1256 |
-
bottom: "conv6_2_mbox_loc"
|
| 1257 |
-
top: "conv6_2_mbox_loc_perm"
|
| 1258 |
-
permute_param {
|
| 1259 |
-
order: 0
|
| 1260 |
-
order: 2
|
| 1261 |
-
order: 3
|
| 1262 |
-
order: 1
|
| 1263 |
-
}
|
| 1264 |
-
}
|
| 1265 |
-
layer {
|
| 1266 |
-
name: "conv6_2_mbox_loc_flat"
|
| 1267 |
-
type: "Flatten"
|
| 1268 |
-
bottom: "conv6_2_mbox_loc_perm"
|
| 1269 |
-
top: "conv6_2_mbox_loc_flat"
|
| 1270 |
-
flatten_param {
|
| 1271 |
-
axis: 1
|
| 1272 |
-
}
|
| 1273 |
-
}
|
| 1274 |
-
layer {
|
| 1275 |
-
name: "conv6_2_mbox_conf"
|
| 1276 |
-
type: "Convolution"
|
| 1277 |
-
bottom: "conv6_2_h"
|
| 1278 |
-
top: "conv6_2_mbox_conf"
|
| 1279 |
-
param {
|
| 1280 |
-
lr_mult: 1
|
| 1281 |
-
decay_mult: 1
|
| 1282 |
-
}
|
| 1283 |
-
param {
|
| 1284 |
-
lr_mult: 2
|
| 1285 |
-
decay_mult: 0
|
| 1286 |
-
}
|
| 1287 |
-
convolution_param {
|
| 1288 |
-
num_output: 12 # 126
|
| 1289 |
-
pad: 1
|
| 1290 |
-
kernel_size: 3
|
| 1291 |
-
stride: 1
|
| 1292 |
-
weight_filler {
|
| 1293 |
-
type: "xavier"
|
| 1294 |
-
}
|
| 1295 |
-
bias_filler {
|
| 1296 |
-
type: "constant"
|
| 1297 |
-
value: 0
|
| 1298 |
-
}
|
| 1299 |
-
}
|
| 1300 |
-
}
|
| 1301 |
-
layer {
|
| 1302 |
-
name: "conv6_2_mbox_conf_perm"
|
| 1303 |
-
type: "Permute"
|
| 1304 |
-
bottom: "conv6_2_mbox_conf"
|
| 1305 |
-
top: "conv6_2_mbox_conf_perm"
|
| 1306 |
-
permute_param {
|
| 1307 |
-
order: 0
|
| 1308 |
-
order: 2
|
| 1309 |
-
order: 3
|
| 1310 |
-
order: 1
|
| 1311 |
-
}
|
| 1312 |
-
}
|
| 1313 |
-
layer {
|
| 1314 |
-
name: "conv6_2_mbox_conf_flat"
|
| 1315 |
-
type: "Flatten"
|
| 1316 |
-
bottom: "conv6_2_mbox_conf_perm"
|
| 1317 |
-
top: "conv6_2_mbox_conf_flat"
|
| 1318 |
-
flatten_param {
|
| 1319 |
-
axis: 1
|
| 1320 |
-
}
|
| 1321 |
-
}
|
| 1322 |
-
layer {
|
| 1323 |
-
name: "conv6_2_mbox_priorbox"
|
| 1324 |
-
type: "PriorBox"
|
| 1325 |
-
bottom: "conv6_2_h"
|
| 1326 |
-
bottom: "data"
|
| 1327 |
-
top: "conv6_2_mbox_priorbox"
|
| 1328 |
-
prior_box_param {
|
| 1329 |
-
min_size: 111.0
|
| 1330 |
-
max_size: 162.0
|
| 1331 |
-
aspect_ratio: 2
|
| 1332 |
-
aspect_ratio: 3
|
| 1333 |
-
flip: true
|
| 1334 |
-
clip: false
|
| 1335 |
-
variance: 0.1
|
| 1336 |
-
variance: 0.1
|
| 1337 |
-
variance: 0.2
|
| 1338 |
-
variance: 0.2
|
| 1339 |
-
step: 32
|
| 1340 |
-
offset: 0.5
|
| 1341 |
-
}
|
| 1342 |
-
}
|
| 1343 |
-
layer {
|
| 1344 |
-
name: "conv7_2_mbox_loc"
|
| 1345 |
-
type: "Convolution"
|
| 1346 |
-
bottom: "conv7_2_h"
|
| 1347 |
-
top: "conv7_2_mbox_loc"
|
| 1348 |
-
param {
|
| 1349 |
-
lr_mult: 1
|
| 1350 |
-
decay_mult: 1
|
| 1351 |
-
}
|
| 1352 |
-
param {
|
| 1353 |
-
lr_mult: 2
|
| 1354 |
-
decay_mult: 0
|
| 1355 |
-
}
|
| 1356 |
-
convolution_param {
|
| 1357 |
-
num_output: 24
|
| 1358 |
-
pad: 1
|
| 1359 |
-
kernel_size: 3
|
| 1360 |
-
stride: 1
|
| 1361 |
-
weight_filler {
|
| 1362 |
-
type: "xavier"
|
| 1363 |
-
}
|
| 1364 |
-
bias_filler {
|
| 1365 |
-
type: "constant"
|
| 1366 |
-
value: 0
|
| 1367 |
-
}
|
| 1368 |
-
}
|
| 1369 |
-
}
|
| 1370 |
-
layer {
|
| 1371 |
-
name: "conv7_2_mbox_loc_perm"
|
| 1372 |
-
type: "Permute"
|
| 1373 |
-
bottom: "conv7_2_mbox_loc"
|
| 1374 |
-
top: "conv7_2_mbox_loc_perm"
|
| 1375 |
-
permute_param {
|
| 1376 |
-
order: 0
|
| 1377 |
-
order: 2
|
| 1378 |
-
order: 3
|
| 1379 |
-
order: 1
|
| 1380 |
-
}
|
| 1381 |
-
}
|
| 1382 |
-
layer {
|
| 1383 |
-
name: "conv7_2_mbox_loc_flat"
|
| 1384 |
-
type: "Flatten"
|
| 1385 |
-
bottom: "conv7_2_mbox_loc_perm"
|
| 1386 |
-
top: "conv7_2_mbox_loc_flat"
|
| 1387 |
-
flatten_param {
|
| 1388 |
-
axis: 1
|
| 1389 |
-
}
|
| 1390 |
-
}
|
| 1391 |
-
layer {
|
| 1392 |
-
name: "conv7_2_mbox_conf"
|
| 1393 |
-
type: "Convolution"
|
| 1394 |
-
bottom: "conv7_2_h"
|
| 1395 |
-
top: "conv7_2_mbox_conf"
|
| 1396 |
-
param {
|
| 1397 |
-
lr_mult: 1
|
| 1398 |
-
decay_mult: 1
|
| 1399 |
-
}
|
| 1400 |
-
param {
|
| 1401 |
-
lr_mult: 2
|
| 1402 |
-
decay_mult: 0
|
| 1403 |
-
}
|
| 1404 |
-
convolution_param {
|
| 1405 |
-
num_output: 12 # 126
|
| 1406 |
-
pad: 1
|
| 1407 |
-
kernel_size: 3
|
| 1408 |
-
stride: 1
|
| 1409 |
-
weight_filler {
|
| 1410 |
-
type: "xavier"
|
| 1411 |
-
}
|
| 1412 |
-
bias_filler {
|
| 1413 |
-
type: "constant"
|
| 1414 |
-
value: 0
|
| 1415 |
-
}
|
| 1416 |
-
}
|
| 1417 |
-
}
|
| 1418 |
-
layer {
|
| 1419 |
-
name: "conv7_2_mbox_conf_perm"
|
| 1420 |
-
type: "Permute"
|
| 1421 |
-
bottom: "conv7_2_mbox_conf"
|
| 1422 |
-
top: "conv7_2_mbox_conf_perm"
|
| 1423 |
-
permute_param {
|
| 1424 |
-
order: 0
|
| 1425 |
-
order: 2
|
| 1426 |
-
order: 3
|
| 1427 |
-
order: 1
|
| 1428 |
-
}
|
| 1429 |
-
}
|
| 1430 |
-
layer {
|
| 1431 |
-
name: "conv7_2_mbox_conf_flat"
|
| 1432 |
-
type: "Flatten"
|
| 1433 |
-
bottom: "conv7_2_mbox_conf_perm"
|
| 1434 |
-
top: "conv7_2_mbox_conf_flat"
|
| 1435 |
-
flatten_param {
|
| 1436 |
-
axis: 1
|
| 1437 |
-
}
|
| 1438 |
-
}
|
| 1439 |
-
layer {
|
| 1440 |
-
name: "conv7_2_mbox_priorbox"
|
| 1441 |
-
type: "PriorBox"
|
| 1442 |
-
bottom: "conv7_2_h"
|
| 1443 |
-
bottom: "data"
|
| 1444 |
-
top: "conv7_2_mbox_priorbox"
|
| 1445 |
-
prior_box_param {
|
| 1446 |
-
min_size: 162.0
|
| 1447 |
-
max_size: 213.0
|
| 1448 |
-
aspect_ratio: 2
|
| 1449 |
-
aspect_ratio: 3
|
| 1450 |
-
flip: true
|
| 1451 |
-
clip: false
|
| 1452 |
-
variance: 0.1
|
| 1453 |
-
variance: 0.1
|
| 1454 |
-
variance: 0.2
|
| 1455 |
-
variance: 0.2
|
| 1456 |
-
step: 64
|
| 1457 |
-
offset: 0.5
|
| 1458 |
-
}
|
| 1459 |
-
}
|
| 1460 |
-
layer {
|
| 1461 |
-
name: "conv8_2_mbox_loc"
|
| 1462 |
-
type: "Convolution"
|
| 1463 |
-
bottom: "conv8_2_h"
|
| 1464 |
-
top: "conv8_2_mbox_loc"
|
| 1465 |
-
param {
|
| 1466 |
-
lr_mult: 1
|
| 1467 |
-
decay_mult: 1
|
| 1468 |
-
}
|
| 1469 |
-
param {
|
| 1470 |
-
lr_mult: 2
|
| 1471 |
-
decay_mult: 0
|
| 1472 |
-
}
|
| 1473 |
-
convolution_param {
|
| 1474 |
-
num_output: 16
|
| 1475 |
-
pad: 1
|
| 1476 |
-
kernel_size: 3
|
| 1477 |
-
stride: 1
|
| 1478 |
-
weight_filler {
|
| 1479 |
-
type: "xavier"
|
| 1480 |
-
}
|
| 1481 |
-
bias_filler {
|
| 1482 |
-
type: "constant"
|
| 1483 |
-
value: 0
|
| 1484 |
-
}
|
| 1485 |
-
}
|
| 1486 |
-
}
|
| 1487 |
-
layer {
|
| 1488 |
-
name: "conv8_2_mbox_loc_perm"
|
| 1489 |
-
type: "Permute"
|
| 1490 |
-
bottom: "conv8_2_mbox_loc"
|
| 1491 |
-
top: "conv8_2_mbox_loc_perm"
|
| 1492 |
-
permute_param {
|
| 1493 |
-
order: 0
|
| 1494 |
-
order: 2
|
| 1495 |
-
order: 3
|
| 1496 |
-
order: 1
|
| 1497 |
-
}
|
| 1498 |
-
}
|
| 1499 |
-
layer {
|
| 1500 |
-
name: "conv8_2_mbox_loc_flat"
|
| 1501 |
-
type: "Flatten"
|
| 1502 |
-
bottom: "conv8_2_mbox_loc_perm"
|
| 1503 |
-
top: "conv8_2_mbox_loc_flat"
|
| 1504 |
-
flatten_param {
|
| 1505 |
-
axis: 1
|
| 1506 |
-
}
|
| 1507 |
-
}
|
| 1508 |
-
layer {
|
| 1509 |
-
name: "conv8_2_mbox_conf"
|
| 1510 |
-
type: "Convolution"
|
| 1511 |
-
bottom: "conv8_2_h"
|
| 1512 |
-
top: "conv8_2_mbox_conf"
|
| 1513 |
-
param {
|
| 1514 |
-
lr_mult: 1
|
| 1515 |
-
decay_mult: 1
|
| 1516 |
-
}
|
| 1517 |
-
param {
|
| 1518 |
-
lr_mult: 2
|
| 1519 |
-
decay_mult: 0
|
| 1520 |
-
}
|
| 1521 |
-
convolution_param {
|
| 1522 |
-
num_output: 8 # 84
|
| 1523 |
-
pad: 1
|
| 1524 |
-
kernel_size: 3
|
| 1525 |
-
stride: 1
|
| 1526 |
-
weight_filler {
|
| 1527 |
-
type: "xavier"
|
| 1528 |
-
}
|
| 1529 |
-
bias_filler {
|
| 1530 |
-
type: "constant"
|
| 1531 |
-
value: 0
|
| 1532 |
-
}
|
| 1533 |
-
}
|
| 1534 |
-
}
|
| 1535 |
-
layer {
|
| 1536 |
-
name: "conv8_2_mbox_conf_perm"
|
| 1537 |
-
type: "Permute"
|
| 1538 |
-
bottom: "conv8_2_mbox_conf"
|
| 1539 |
-
top: "conv8_2_mbox_conf_perm"
|
| 1540 |
-
permute_param {
|
| 1541 |
-
order: 0
|
| 1542 |
-
order: 2
|
| 1543 |
-
order: 3
|
| 1544 |
-
order: 1
|
| 1545 |
-
}
|
| 1546 |
-
}
|
| 1547 |
-
layer {
|
| 1548 |
-
name: "conv8_2_mbox_conf_flat"
|
| 1549 |
-
type: "Flatten"
|
| 1550 |
-
bottom: "conv8_2_mbox_conf_perm"
|
| 1551 |
-
top: "conv8_2_mbox_conf_flat"
|
| 1552 |
-
flatten_param {
|
| 1553 |
-
axis: 1
|
| 1554 |
-
}
|
| 1555 |
-
}
|
| 1556 |
-
layer {
|
| 1557 |
-
name: "conv8_2_mbox_priorbox"
|
| 1558 |
-
type: "PriorBox"
|
| 1559 |
-
bottom: "conv8_2_h"
|
| 1560 |
-
bottom: "data"
|
| 1561 |
-
top: "conv8_2_mbox_priorbox"
|
| 1562 |
-
prior_box_param {
|
| 1563 |
-
min_size: 213.0
|
| 1564 |
-
max_size: 264.0
|
| 1565 |
-
aspect_ratio: 2
|
| 1566 |
-
flip: true
|
| 1567 |
-
clip: false
|
| 1568 |
-
variance: 0.1
|
| 1569 |
-
variance: 0.1
|
| 1570 |
-
variance: 0.2
|
| 1571 |
-
variance: 0.2
|
| 1572 |
-
step: 100
|
| 1573 |
-
offset: 0.5
|
| 1574 |
-
}
|
| 1575 |
-
}
|
| 1576 |
-
layer {
|
| 1577 |
-
name: "conv9_2_mbox_loc"
|
| 1578 |
-
type: "Convolution"
|
| 1579 |
-
bottom: "conv9_2_h"
|
| 1580 |
-
top: "conv9_2_mbox_loc"
|
| 1581 |
-
param {
|
| 1582 |
-
lr_mult: 1
|
| 1583 |
-
decay_mult: 1
|
| 1584 |
-
}
|
| 1585 |
-
param {
|
| 1586 |
-
lr_mult: 2
|
| 1587 |
-
decay_mult: 0
|
| 1588 |
-
}
|
| 1589 |
-
convolution_param {
|
| 1590 |
-
num_output: 16
|
| 1591 |
-
pad: 1
|
| 1592 |
-
kernel_size: 3
|
| 1593 |
-
stride: 1
|
| 1594 |
-
weight_filler {
|
| 1595 |
-
type: "xavier"
|
| 1596 |
-
}
|
| 1597 |
-
bias_filler {
|
| 1598 |
-
type: "constant"
|
| 1599 |
-
value: 0
|
| 1600 |
-
}
|
| 1601 |
-
}
|
| 1602 |
-
}
|
| 1603 |
-
layer {
|
| 1604 |
-
name: "conv9_2_mbox_loc_perm"
|
| 1605 |
-
type: "Permute"
|
| 1606 |
-
bottom: "conv9_2_mbox_loc"
|
| 1607 |
-
top: "conv9_2_mbox_loc_perm"
|
| 1608 |
-
permute_param {
|
| 1609 |
-
order: 0
|
| 1610 |
-
order: 2
|
| 1611 |
-
order: 3
|
| 1612 |
-
order: 1
|
| 1613 |
-
}
|
| 1614 |
-
}
|
| 1615 |
-
layer {
|
| 1616 |
-
name: "conv9_2_mbox_loc_flat"
|
| 1617 |
-
type: "Flatten"
|
| 1618 |
-
bottom: "conv9_2_mbox_loc_perm"
|
| 1619 |
-
top: "conv9_2_mbox_loc_flat"
|
| 1620 |
-
flatten_param {
|
| 1621 |
-
axis: 1
|
| 1622 |
-
}
|
| 1623 |
-
}
|
| 1624 |
-
layer {
|
| 1625 |
-
name: "conv9_2_mbox_conf"
|
| 1626 |
-
type: "Convolution"
|
| 1627 |
-
bottom: "conv9_2_h"
|
| 1628 |
-
top: "conv9_2_mbox_conf"
|
| 1629 |
-
param {
|
| 1630 |
-
lr_mult: 1
|
| 1631 |
-
decay_mult: 1
|
| 1632 |
-
}
|
| 1633 |
-
param {
|
| 1634 |
-
lr_mult: 2
|
| 1635 |
-
decay_mult: 0
|
| 1636 |
-
}
|
| 1637 |
-
convolution_param {
|
| 1638 |
-
num_output: 8 # 84
|
| 1639 |
-
pad: 1
|
| 1640 |
-
kernel_size: 3
|
| 1641 |
-
stride: 1
|
| 1642 |
-
weight_filler {
|
| 1643 |
-
type: "xavier"
|
| 1644 |
-
}
|
| 1645 |
-
bias_filler {
|
| 1646 |
-
type: "constant"
|
| 1647 |
-
value: 0
|
| 1648 |
-
}
|
| 1649 |
-
}
|
| 1650 |
-
}
|
| 1651 |
-
layer {
|
| 1652 |
-
name: "conv9_2_mbox_conf_perm"
|
| 1653 |
-
type: "Permute"
|
| 1654 |
-
bottom: "conv9_2_mbox_conf"
|
| 1655 |
-
top: "conv9_2_mbox_conf_perm"
|
| 1656 |
-
permute_param {
|
| 1657 |
-
order: 0
|
| 1658 |
-
order: 2
|
| 1659 |
-
order: 3
|
| 1660 |
-
order: 1
|
| 1661 |
-
}
|
| 1662 |
-
}
|
| 1663 |
-
layer {
|
| 1664 |
-
name: "conv9_2_mbox_conf_flat"
|
| 1665 |
-
type: "Flatten"
|
| 1666 |
-
bottom: "conv9_2_mbox_conf_perm"
|
| 1667 |
-
top: "conv9_2_mbox_conf_flat"
|
| 1668 |
-
flatten_param {
|
| 1669 |
-
axis: 1
|
| 1670 |
-
}
|
| 1671 |
-
}
|
| 1672 |
-
layer {
|
| 1673 |
-
name: "conv9_2_mbox_priorbox"
|
| 1674 |
-
type: "PriorBox"
|
| 1675 |
-
bottom: "conv9_2_h"
|
| 1676 |
-
bottom: "data"
|
| 1677 |
-
top: "conv9_2_mbox_priorbox"
|
| 1678 |
-
prior_box_param {
|
| 1679 |
-
min_size: 264.0
|
| 1680 |
-
max_size: 315.0
|
| 1681 |
-
aspect_ratio: 2
|
| 1682 |
-
flip: true
|
| 1683 |
-
clip: false
|
| 1684 |
-
variance: 0.1
|
| 1685 |
-
variance: 0.1
|
| 1686 |
-
variance: 0.2
|
| 1687 |
-
variance: 0.2
|
| 1688 |
-
step: 300
|
| 1689 |
-
offset: 0.5
|
| 1690 |
-
}
|
| 1691 |
-
}
|
| 1692 |
-
layer {
|
| 1693 |
-
name: "mbox_loc"
|
| 1694 |
-
type: "Concat"
|
| 1695 |
-
bottom: "conv4_3_norm_mbox_loc_flat"
|
| 1696 |
-
bottom: "fc7_mbox_loc_flat"
|
| 1697 |
-
bottom: "conv6_2_mbox_loc_flat"
|
| 1698 |
-
bottom: "conv7_2_mbox_loc_flat"
|
| 1699 |
-
bottom: "conv8_2_mbox_loc_flat"
|
| 1700 |
-
bottom: "conv9_2_mbox_loc_flat"
|
| 1701 |
-
top: "mbox_loc"
|
| 1702 |
-
concat_param {
|
| 1703 |
-
axis: 1
|
| 1704 |
-
}
|
| 1705 |
-
}
|
| 1706 |
-
layer {
|
| 1707 |
-
name: "mbox_conf"
|
| 1708 |
-
type: "Concat"
|
| 1709 |
-
bottom: "conv4_3_norm_mbox_conf_flat"
|
| 1710 |
-
bottom: "fc7_mbox_conf_flat"
|
| 1711 |
-
bottom: "conv6_2_mbox_conf_flat"
|
| 1712 |
-
bottom: "conv7_2_mbox_conf_flat"
|
| 1713 |
-
bottom: "conv8_2_mbox_conf_flat"
|
| 1714 |
-
bottom: "conv9_2_mbox_conf_flat"
|
| 1715 |
-
top: "mbox_conf"
|
| 1716 |
-
concat_param {
|
| 1717 |
-
axis: 1
|
| 1718 |
-
}
|
| 1719 |
-
}
|
| 1720 |
-
layer {
|
| 1721 |
-
name: "mbox_priorbox"
|
| 1722 |
-
type: "Concat"
|
| 1723 |
-
bottom: "conv4_3_norm_mbox_priorbox"
|
| 1724 |
-
bottom: "fc7_mbox_priorbox"
|
| 1725 |
-
bottom: "conv6_2_mbox_priorbox"
|
| 1726 |
-
bottom: "conv7_2_mbox_priorbox"
|
| 1727 |
-
bottom: "conv8_2_mbox_priorbox"
|
| 1728 |
-
bottom: "conv9_2_mbox_priorbox"
|
| 1729 |
-
top: "mbox_priorbox"
|
| 1730 |
-
concat_param {
|
| 1731 |
-
axis: 2
|
| 1732 |
-
}
|
| 1733 |
-
}
|
| 1734 |
-
|
| 1735 |
-
layer {
|
| 1736 |
-
name: "mbox_conf_reshape"
|
| 1737 |
-
type: "Reshape"
|
| 1738 |
-
bottom: "mbox_conf"
|
| 1739 |
-
top: "mbox_conf_reshape"
|
| 1740 |
-
reshape_param {
|
| 1741 |
-
shape {
|
| 1742 |
-
dim: 0
|
| 1743 |
-
dim: -1
|
| 1744 |
-
dim: 2
|
| 1745 |
-
}
|
| 1746 |
-
}
|
| 1747 |
-
}
|
| 1748 |
-
layer {
|
| 1749 |
-
name: "mbox_conf_softmax"
|
| 1750 |
-
type: "Softmax"
|
| 1751 |
-
bottom: "mbox_conf_reshape"
|
| 1752 |
-
top: "mbox_conf_softmax"
|
| 1753 |
-
softmax_param {
|
| 1754 |
-
axis: 2
|
| 1755 |
-
}
|
| 1756 |
-
}
|
| 1757 |
-
layer {
|
| 1758 |
-
name: "mbox_conf_flatten"
|
| 1759 |
-
type: "Flatten"
|
| 1760 |
-
bottom: "mbox_conf_softmax"
|
| 1761 |
-
top: "mbox_conf_flatten"
|
| 1762 |
-
flatten_param {
|
| 1763 |
-
axis: 1
|
| 1764 |
-
}
|
| 1765 |
-
}
|
| 1766 |
-
|
| 1767 |
-
layer {
|
| 1768 |
-
name: "detection_out"
|
| 1769 |
-
type: "DetectionOutput"
|
| 1770 |
-
bottom: "mbox_loc"
|
| 1771 |
-
bottom: "mbox_conf_flatten"
|
| 1772 |
-
bottom: "mbox_priorbox"
|
| 1773 |
-
top: "detection_out"
|
| 1774 |
-
include {
|
| 1775 |
-
phase: TEST
|
| 1776 |
-
}
|
| 1777 |
-
detection_output_param {
|
| 1778 |
-
num_classes: 2
|
| 1779 |
-
share_location: true
|
| 1780 |
-
background_label_id: 0
|
| 1781 |
-
nms_param {
|
| 1782 |
-
nms_threshold: 0.3
|
| 1783 |
-
top_k: 400
|
| 1784 |
-
}
|
| 1785 |
-
code_type: CENTER_SIZE
|
| 1786 |
-
keep_top_k: 200
|
| 1787 |
-
confidence_threshold: 0.01
|
| 1788 |
-
}
|
| 1789 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
download_models.py
CHANGED
|
@@ -1,56 +1,16 @@
|
|
|
|
|
| 1 |
import os
|
| 2 |
import re
|
| 3 |
-
import cv2
|
| 4 |
-
import numpy as np
|
| 5 |
-
import io
|
| 6 |
import sys
|
|
|
|
|
|
|
| 7 |
import numpy as np
|
| 8 |
-
import timm
|
| 9 |
import pyiqa
|
|
|
|
| 10 |
import torch
|
| 11 |
-
from
|
| 12 |
-
|
| 13 |
|
| 14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
|
| 16 |
-
licence_model = torch.hub.load(
|
| 17 |
-
"ultralytics/yolov5", "custom", path="Licenseplate_model.pt", device="cpu", force_reload=True
|
| 18 |
-
)
|
| 19 |
-
licence_model.cpu()
|
| 20 |
-
|
| 21 |
-
detector = cv2.dnn.DetectionModel("res10_300x300_ssd_iter_140000_fp16.caffemodel", "deploy.prototxt")
|
| 22 |
-
|
| 23 |
-
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
|
| 24 |
-
doc_qa_model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
|
| 25 |
-
|
| 26 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 27 |
-
doc_qa_model.to(device)
|
| 28 |
-
|
| 29 |
-
model = torch.hub.load(
|
| 30 |
-
"ultralytics/yolov5", "custom", path="best.pt", device="cpu", force_reload=True
|
| 31 |
-
)
|
| 32 |
-
model.cpu()
|
| 33 |
-
|
| 34 |
-
classes = [
|
| 35 |
-
"gas-distribution-meter",
|
| 36 |
-
"gas-distribution-piping",
|
| 37 |
-
"gas-distribution-regulator",
|
| 38 |
-
"gas-distribution-valve"
|
| 39 |
-
]
|
| 40 |
-
|
| 41 |
-
class_to_idx = {'gas-distribution-meter': 0,
|
| 42 |
-
'gas-distribution-piping': 1,
|
| 43 |
-
'gas-distribution-regulator': 2,
|
| 44 |
-
'gas-distribution-valve': 3}
|
| 45 |
-
|
| 46 |
-
idx_to_classes = {v:k for k,v in class_to_idx.items()}
|
| 47 |
-
modelname = "resnet50d"
|
| 48 |
-
model_weights = "best_classifer_model.pt"
|
| 49 |
-
num_classes = len(classes)
|
| 50 |
-
|
| 51 |
-
classifier_model = timm.create_model(
|
| 52 |
-
"resnet50d", pretrained=True, num_classes=num_classes, drop_path_rate=0.05
|
| 53 |
-
)
|
| 54 |
-
classifier_model.load_state_dict(torch.load(model_weights, map_location=torch.device('cpu'))["model_state_dict"])
|
| 55 |
|
| 56 |
-
|
|
|
|
| 1 |
+
import io
|
| 2 |
import os
|
| 3 |
import re
|
|
|
|
|
|
|
|
|
|
| 4 |
import sys
|
| 5 |
+
|
| 6 |
+
import cv2
|
| 7 |
import numpy as np
|
|
|
|
| 8 |
import pyiqa
|
| 9 |
+
import timm
|
| 10 |
import torch
|
| 11 |
+
from sentence_transformers import SentenceTransformer
|
|
|
|
| 12 |
|
| 13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
image_sim_model = SentenceTransformer("clip-ViT-B-32")
|
res10_300x300_ssd_iter_140000_fp16.caffemodel
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:510ffd2471bd81e3fcc88a5beb4eae4fb445ccf8333ebc54e7302b83f4158a76
|
| 3 |
-
size 5351047
|
|
|
|
|
|
|
|
|
|
|
|