File size: 4,738 Bytes
294ad84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0788398
294ad84
 
 
 
 
 
 
 
 
 
 
 
0788398
 
 
 
 
294ad84
 
 
 
 
 
0788398
294ad84
 
 
 
 
 
0788398
 
 
 
 
294ad84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0788398
 
 
 
 
294ad84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0788398
 
 
 
 
 
 
 
 
294ad84
0788398
 
 
 
 
 
294ad84
 
 
 
3e95aa0
294ad84
 
 
 
 
 
 
 
 
03d0755
3f5c67e
294ad84
3f5c67e
6703418
 
3f5c67e
42175aa
294ad84
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# %%
import os, json, itertools, bisect, gc
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
import transformers
import torch
from accelerate import Accelerator
import accelerate
import time
import os
import gradio as gr
import requests
import random
import googletrans
translator = googletrans.Translator()

model = None
tokenizer = None
generator = None

os.environ["CUDA_VISIBLE_DEVICES"]=""

def load_model(model_name, eight_bit=0, device_map="auto"):
    global model, tokenizer, generator
    print("Loading "+model_name+"...")

    if device_map == "zero":
        device_map = "balanced_low_0"

    # config
    gpu_count = torch.cuda.device_count()
    print('gpu_count', gpu_count)

    if torch.cuda.is_available():
        torch_dtype = torch.float16
    else:
        torch_dtype = torch.float32
        
    print(model_name)
    tokenizer = transformers.LLaMATokenizer.from_pretrained(model_name)
    model = transformers.LLaMAForCausalLM.from_pretrained(
        model_name,
        #device_map=device_map,
        #device_map="auto",
        torch_dtype=torch_dtype,
        #max_memory = {0: "14GB", 1: "14GB", 2: "14GB", 3: "14GB",4: "14GB",5: "14GB",6: "14GB",7: "14GB"},
        #load_in_8bit=eight_bit,
        #from_tf=True,
        low_cpu_mem_usage=True,
        load_in_8bit=False,
        cache_dir="cache"
    )
    if torch.cuda.is_available():
        model = model.cuda()
    else:
        model = model.cpu()
    generator = model.generate

# chat doctor
def chatdoctor(input, state):   
    # print('input',input)
    # history = history or []
    print('state',state)
    
    invitation = "ChatDoctor: "
    human_invitation = "Patient: "
    fulltext = "If you are a doctor, please answer the medical questions based on the patient's description. \n\n"
    
    for i in range(len(state)):
        if i % 2:
            fulltext += human_invitation + state[i] + "\n\n"
        else:
            fulltext += invitation + state[i] + "\n\n"
    fulltext += human_invitation + input + "\n\n"
    fulltext += invitation
    print('fulltext: ',fulltext)

    generated_text = ""
    gen_in = tokenizer(fulltext, return_tensors="pt").input_ids
    if torch.cuda.is_available():
        gen_in = gen_in.cuda()
    else:
        gen_in = gen_in.cpu()
    in_tokens = len(gen_in)
    print('len token',in_tokens)
    with torch.no_grad():
            generated_ids = generator(
                gen_in,
                max_new_tokens=200,
                use_cache=True,
                pad_token_id=tokenizer.eos_token_id,
                num_return_sequences=1,
                do_sample=True,
                repetition_penalty=1.1, # 1.0 means 'off'. unfortunately if we penalize it it will not output Sphynx:
                temperature=0.5, # default: 1.0
                top_k = 50, # default: 50
                top_p = 1.0, # default: 1.0
                early_stopping=True,
            )
            generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] # for some reason, batch_decode returns an array of one element?
            text_without_prompt = generated_text[len(fulltext):]
    response = text_without_prompt
    response = response.split(human_invitation)[0]
    response.strip()
    print(invitation + response)
    print("")
    return response


def predict(input, chatbot, state):
    print('predict state: ', state)
    
    # input์— ํ•œ๊ตญ์–ด๊ฐ€ detect ๋˜๋ฉด ์˜์–ด๋กœ ๋ณ€๊ฒฝ, ์•„๋‹ˆ๋ฉด ๊ทธ๋Œ€๋กœ
    is_kor = True
    if googletrans.Translator().detect(input).lang == 'ko':
        en_input = translator.translate(input, src='ko', dest='en').text
    else:
        en_input = input
        is_kor = False
        
    response = chatdoctor(en_input, state)

    if is_kor:
        ko_response = translator.translate(response, src='en', dest='ko').text
    else:
        ko_response = response
        
    state.append(response)
    chatbot.append((input, ko_response))
    return chatbot, state

load_model("mnc-ai/chatdoctor")

with gr.Blocks() as demo:
    gr.Markdown("""<h1><center>์ฑ— ๋‹ฅํ„ฐ์ž…๋‹ˆ๋‹ค. ์–ด๋””๊ฐ€ ๋ถˆํŽธํ•˜์‹ ๊ฐ€์š”?</center></h1>
    """)
    chatbot = gr.Chatbot()
    state = gr.State([])
    with gr.Row():
        txt = gr.Textbox(show_label=False, placeholder="์—ฌ๊ธฐ์— ์งˆ๋ฌธ์„ ์“ฐ๊ณ  ์—”ํ„ฐ").style(container=False)
    clear = gr.Button("์ƒ๋‹ด ์ƒˆ๋กœ ์‹œ์ž‘")
    txt.submit(predict, inputs=[txt, chatbot, state], outputs=[chatbot, state], queue=False )
    txt.submit(lambda x: "", txt, txt)
    clear.click(lambda: None, None, chatbot, queue=False)
    clear.click(lambda x: "", txt, txt)
    # clear ํด๋ฆญ ์‹œ state ์ดˆ๊ธฐํ™”
    clear.click(lambda x: [], state, state)
    
demo.launch()