Spaces:
Sleeping
Sleeping
Rename whisper.py to app.py
Browse files- app.py +79 -0
- whisper.py +0 -67
app.py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import os
|
| 7 |
+
|
| 8 |
+
# --- 1. Model Configuration and Loading ---
|
| 9 |
+
# This part runs only once when the app starts.
|
| 10 |
+
|
| 11 |
+
print("--- Setting up for CPU ---")
|
| 12 |
+
device = "cpu"
|
| 13 |
+
torch_dtype = torch.float32 # Use float32 for CPU
|
| 14 |
+
|
| 15 |
+
model_id = "vhdm/whisper-large-fa-v1"
|
| 16 |
+
|
| 17 |
+
print("--- Loading model and processor ---")
|
| 18 |
+
# Load the model and processor
|
| 19 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 20 |
+
model_id,
|
| 21 |
+
torch_dtype=torch_dtype,
|
| 22 |
+
low_cpu_mem_usage=True,
|
| 23 |
+
use_safetensors=True # Safetensors is generally preferred
|
| 24 |
+
)
|
| 25 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 26 |
+
|
| 27 |
+
# Create the pipeline
|
| 28 |
+
print("--- Creating transcription pipeline ---")
|
| 29 |
+
pipe = pipeline(
|
| 30 |
+
"automatic-speech-recognition",
|
| 31 |
+
model=model,
|
| 32 |
+
tokenizer=processor.tokenizer,
|
| 33 |
+
feature_extractor=processor.feature_extractor,
|
| 34 |
+
max_new_tokens=128,
|
| 35 |
+
torch_dtype=torch_dtype,
|
| 36 |
+
device=device,
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
print("--- Setup complete. Gradio app is ready. ---")
|
| 40 |
+
|
| 41 |
+
# --- 2. The Transcription Function ---
|
| 42 |
+
# This function is called every time a user uploads a file.
|
| 43 |
+
|
| 44 |
+
def transcribe_audio(audio_filepath):
|
| 45 |
+
"""
|
| 46 |
+
Takes an audio file path, transcribes it, and returns the text.
|
| 47 |
+
"""
|
| 48 |
+
if audio_filepath is None:
|
| 49 |
+
return "Please upload an audio file first."
|
| 50 |
+
|
| 51 |
+
print(f"Processing file: {audio_filepath}")
|
| 52 |
+
result = pipe(audio_filepath, return_timestamps=True)
|
| 53 |
+
transcription = result["text"]
|
| 54 |
+
print(f"Transcription result: {transcription}")
|
| 55 |
+
|
| 56 |
+
return transcription
|
| 57 |
+
|
| 58 |
+
# --- 3. Gradio Web Interface ---
|
| 59 |
+
|
| 60 |
+
# Define the title and description for the web app
|
| 61 |
+
title = "Whisper Persian ASR ๐ฎ๐ท"
|
| 62 |
+
description = """
|
| 63 |
+
This is a demo for the `vhdm/whisper-large-fa-v1` model for automatic speech recognition (ASR) in Persian.
|
| 64 |
+
<br>
|
| 65 |
+
Upload your audio file (MP3, WAV, etc.) or record directly from your microphone and click 'Submit' to see the transcription.
|
| 66 |
+
"""
|
| 67 |
+
|
| 68 |
+
# Create the Gradio interface
|
| 69 |
+
iface = gr.Interface(
|
| 70 |
+
fn=transcribe_audio,
|
| 71 |
+
inputs=gr.Audio(type="filepath", label="Upload or Record Persian Audio"),
|
| 72 |
+
outputs=gr.Textbox(label="Transcription Result"),
|
| 73 |
+
title=title,
|
| 74 |
+
description=description,
|
| 75 |
+
examples=[["example.wav"]] # Optional: add an example file
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
# Launch the app
|
| 79 |
+
iface.launch()
|
whisper.py
DELETED
|
@@ -1,67 +0,0 @@
|
|
| 1 |
-
# -*- coding: utf-8 -*-
|
| 2 |
-
"""whisper.ipynb
|
| 3 |
-
|
| 4 |
-
Automatically generated by Colab.
|
| 5 |
-
|
| 6 |
-
Original file is located at
|
| 7 |
-
https://colab.research.google.com/drive/1zMkidOS8-BJnLbouvesA3v7WYcChikTY
|
| 8 |
-
"""
|
| 9 |
-
|
| 10 |
-
# Cell 1: Installations (run this once, then restart runtime)
|
| 11 |
-
!pip install --upgrade --force-reinstall transformers accelerate datasets torchcodec ffmpeg-python torch
|
| 12 |
-
|
| 13 |
-
# Cell 2: Main Script (Corrected)
|
| 14 |
-
import torch
|
| 15 |
-
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
| 16 |
-
import os
|
| 17 |
-
|
| 18 |
-
print("โ
Libraries loaded successfully!")
|
| 19 |
-
|
| 20 |
-
# Set up the device
|
| 21 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 22 |
-
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 23 |
-
print(f"Using device: {device}")
|
| 24 |
-
|
| 25 |
-
# Model ID
|
| 26 |
-
model_id = "vhdm/whisper-large-fa-v1"
|
| 27 |
-
|
| 28 |
-
# Load the model
|
| 29 |
-
print("Loading model...")
|
| 30 |
-
# Corrected the typo in the class name here โ
|
| 31 |
-
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 32 |
-
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True
|
| 33 |
-
)
|
| 34 |
-
model.to(device)
|
| 35 |
-
|
| 36 |
-
# Load the processor
|
| 37 |
-
print("Loading processor...")
|
| 38 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
| 39 |
-
|
| 40 |
-
# Create the pipeline for long-form audio
|
| 41 |
-
pipe = pipeline(
|
| 42 |
-
"automatic-speech-recognition",
|
| 43 |
-
model=model,
|
| 44 |
-
tokenizer=processor.tokenizer,
|
| 45 |
-
feature_extractor=processor.feature_extractor,
|
| 46 |
-
max_new_tokens=128,
|
| 47 |
-
return_timestamps=True,
|
| 48 |
-
torch_dtype=torch_dtype,
|
| 49 |
-
device=device,
|
| 50 |
-
)
|
| 51 |
-
|
| 52 |
-
# --- Put your long audio file's name here ---
|
| 53 |
-
file_path = "long.mp3"
|
| 54 |
-
# ------------------------------------------
|
| 55 |
-
|
| 56 |
-
# Check if the file exists
|
| 57 |
-
if not os.path.exists(file_path):
|
| 58 |
-
print(f"โ Error: File '{file_path}' not found. Please upload your file and check the name.")
|
| 59 |
-
else:
|
| 60 |
-
# Process your long audio file
|
| 61 |
-
print(f"Processing long audio file: {file_path} ... (This might take a while)")
|
| 62 |
-
result = pipe(file_path)
|
| 63 |
-
|
| 64 |
-
# Print the final result
|
| 65 |
-
print("\n--- Transcription Result ---")
|
| 66 |
-
print(result["text"])
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|