Spaces:
Sleeping
Sleeping
| """ | |
| Free H200 Training Script for Nano-Coder | |
| Optimized for HF's free 4-minute daily H200 access | |
| """ | |
| import os | |
| import time | |
| import math | |
| import pickle | |
| from contextlib import nullcontext | |
| import numpy as np | |
| import torch | |
| from torch.nn.parallel import DistributedDataParallel as DDP | |
| from torch.distributed import init_process_group, destroy_process_group | |
| from model import GPTConfig, GPT | |
| # Hugging Face specific imports | |
| from huggingface_hub import HfApi, login | |
| import wandb | |
| # ----------------------------------------------------------------------------- | |
| # Configuration optimized for FREE H200 (4 minutes daily) | |
| # I/O | |
| out_dir = 'out-nano-coder-free' | |
| eval_interval = 50 # Very frequent evaluation for short runs | |
| log_interval = 2 | |
| eval_iters = 10 # Fewer eval iterations | |
| eval_only = False | |
| always_save_checkpoint = True | |
| init_from = 'scratch' | |
| # wandb logging - enabled for HF | |
| wandb_log = True | |
| wandb_project = 'nano-coder-free' | |
| wandb_run_name = 'nano-coder-h200-free' | |
| # data | |
| dataset = 'python-codes-25k' | |
| gradient_accumulation_steps = 1 * 8 # Minimal for H200 | |
| batch_size = 64 # Larger batch size for H200 efficiency | |
| block_size = 512 # Smaller context for faster training | |
| # model - smaller for free tier | |
| n_layer = 6 # Reduced from 12 | |
| n_head = 6 # Reduced from 12 | |
| n_embd = 384 # Reduced from 768 | |
| dropout = 0.1 | |
| bias = False | |
| # optimizer - optimized for H200 | |
| learning_rate = 1e-3 # Higher learning rate for faster convergence | |
| max_iters = 1000 # Limited iterations for 4-minute runs | |
| weight_decay = 1e-1 | |
| beta1 = 0.9 | |
| beta2 = 0.95 | |
| grad_clip = 1.0 | |
| # learning rate decay - faster for short runs | |
| decay_lr = True | |
| warmup_iters = 100 # Shorter warmup | |
| lr_decay_iters = 1000 | |
| min_lr = 1e-4 | |
| # DDP settings | |
| backend = 'nccl' | |
| # system | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16' | |
| compile = True | |
| # HF specific | |
| hf_repo_id = "mlopez6132/nano-coder-free" # Free tier repo | |
| push_to_hub = True | |
| # Time tracking for 4-minute limit | |
| start_time = time.time() | |
| MAX_TRAINING_TIME = 3.5 * 60 # 3.5 minutes to be safe | |
| # ----------------------------------------------------------------------------- | |
| config_keys = [k for k,v in globals().items() if not k.startswith('_') and isinstance(v, (int, float, bool, str))] | |
| exec(open('configurator.py').read()) | |
| config = {k: globals()[k] for k in config_keys} | |
| # ----------------------------------------------------------------------------- | |
| # HF setup | |
| if push_to_hub: | |
| login() # Will use HF_TOKEN environment variable | |
| api = HfApi() | |
| # various inits, derived attributes, I/O setup | |
| ddp = int(os.environ.get('RANK', -1)) != -1 | |
| if ddp: | |
| init_process_group(backend=backend) | |
| ddp_rank = int(os.environ['RANK']) | |
| ddp_local_rank = int(os.environ['LOCAL_RANK']) | |
| ddp_world_size = int(os.environ['WORLD_SIZE']) | |
| device = f'cuda:{ddp_local_rank}' | |
| torch.cuda.set_device(device) | |
| master_process = ddp_rank == 0 | |
| seed_offset = ddp_rank | |
| assert gradient_accumulation_steps % ddp_world_size == 0 | |
| gradient_accumulation_steps //= ddp_world_size | |
| else: | |
| master_process = True | |
| seed_offset = 0 | |
| ddp_world_size = 1 | |
| tokens_per_iter = gradient_accumulation_steps * ddp_world_size * batch_size * block_size | |
| print(f"tokens per iteration will be: {tokens_per_iter:,}") | |
| print(f"FREE H200 TRAINING - MAX TIME: {MAX_TRAINING_TIME/60:.1f} minutes") | |
| if master_process: | |
| os.makedirs(out_dir, exist_ok=True) | |
| torch.manual_seed(1337 + seed_offset) | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| torch.backends.cudnn.allow_tf32 = True | |
| device_type = 'cuda' if 'cuda' in device else 'cpu' | |
| ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype] | |
| ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype) | |
| # data loader | |
| data_dir = os.path.join('data', dataset) | |
| def get_batch(split): | |
| if split == 'train': | |
| data = np.memmap(os.path.join(data_dir, 'train.bin'), dtype=np.uint16, mode='r') | |
| else: | |
| data = np.memmap(os.path.join(data_dir, 'val.bin'), dtype=np.uint16, mode='r') | |
| ix = torch.randint(len(data) - block_size, (batch_size,)) | |
| x = torch.stack([torch.from_numpy((data[i:i+block_size]).astype(np.int64)) for i in ix]) | |
| y = torch.stack([torch.from_numpy((data[i+1:i+1+block_size]).astype(np.int64)) for i in ix]) | |
| if device_type == 'cuda': | |
| x, y = x.pin_memory().to(device, non_blocking=True), y.pin_memory().to(device, non_blocking=True) | |
| else: | |
| x, y = x.to(device), y.to(device) | |
| return x, y | |
| # init these up here, can override if init_from='resume' | |
| iter_num = 0 | |
| best_val_loss = 1e9 | |
| # attempt to derive vocab_size from the dataset | |
| meta_path = os.path.join(data_dir, 'meta.pkl') | |
| meta_vocab_size = None | |
| if os.path.exists(meta_path): | |
| with open(meta_path, 'rb') as f: | |
| meta = pickle.load(f) | |
| meta_vocab_size = meta['vocab_size'] | |
| print(f"found vocab_size = {meta_vocab_size} (inside {meta_path})") | |
| # model init | |
| model_args = dict(n_layer=n_layer, n_head=n_head, n_embd=n_embd, block_size=block_size, | |
| bias=bias, vocab_size=None, dropout=dropout) | |
| if init_from == 'scratch': | |
| print("Initializing a new nano-coder model from scratch (FREE TIER)") | |
| if meta_vocab_size is None: | |
| print("defaulting to vocab_size of GPT-2 to 50304") | |
| model_args['vocab_size'] = meta_vocab_size if meta_vocab_size is not None else 50304 | |
| gptconf = GPTConfig(**model_args) | |
| model = GPT(gptconf) | |
| elif init_from == 'resume': | |
| print(f"Resuming training from {out_dir}") | |
| ckpt_path = os.path.join(out_dir, 'ckpt.pt') | |
| checkpoint = torch.load(ckpt_path, map_location=device) | |
| checkpoint_model_args = checkpoint['model_args'] | |
| for k in ['n_layer', 'n_head', 'n_embd', 'block_size', 'bias', 'vocab_size']: | |
| model_args[k] = checkpoint_model_args[k] | |
| gptconf = GPTConfig(**model_args) | |
| model = GPT(gptconf) | |
| state_dict = checkpoint['model'] | |
| unwanted_prefix = '_orig_mod.' | |
| for k,v in list(state_dict.items()): | |
| if k.startswith(unwanted_prefix): | |
| state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k) | |
| model.load_state_dict(state_dict) | |
| iter_num = checkpoint['iter_num'] | |
| best_val_loss = checkpoint['best_val_loss'] | |
| elif init_from.startswith('gpt2'): | |
| print(f"Initializing from OpenAI GPT-2 weights: {init_from}") | |
| override_args = dict(dropout=dropout) | |
| model = GPT.from_pretrained(init_from, override_args) | |
| for k in ['n_layer', 'n_head', 'n_embd', 'block_size', 'bias', 'vocab_size']: | |
| model_args[k] = getattr(model.config, k) | |
| if block_size < model.config.block_size: | |
| model.crop_block_size(block_size) | |
| model_args['block_size'] = block_size | |
| model.to(device) | |
| # initialize a GradScaler | |
| scaler = torch.cuda.amp.GradScaler(enabled=(dtype == 'float16')) | |
| # optimizer | |
| optimizer = model.configure_optimizers(weight_decay, learning_rate, (beta1, beta2), device_type) | |
| if init_from == 'resume': | |
| optimizer.load_state_dict(checkpoint['optimizer']) | |
| checkpoint = None | |
| # compile the model | |
| if compile: | |
| print("compiling the model... (takes a ~minute)") | |
| unoptimized_model = model | |
| model = torch.compile(model) | |
| # wrap model into DDP container | |
| if ddp: | |
| model = DDP(model, device_ids=[ddp_local_rank]) | |
| # helps estimate an arbitrarily accurate loss over either split using many batches | |
| def estimate_loss(): | |
| out = {} | |
| model.eval() | |
| for split in ['train', 'val']: | |
| losses = torch.zeros(eval_iters) | |
| for k in range(eval_iters): | |
| X, Y = get_batch(split) | |
| with ctx: | |
| logits, loss = model(X, Y) | |
| losses[k] = loss.item() | |
| out[split] = losses.mean() | |
| model.train() | |
| return out | |
| # learning rate decay scheduler (cosine with warmup) | |
| def get_lr(it): | |
| if it < warmup_iters: | |
| return learning_rate * (it + 1) / (warmup_iters + 1) | |
| if it > lr_decay_iters: | |
| return min_lr | |
| decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters) | |
| assert 0 <= decay_ratio <= 1 | |
| coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) | |
| return min_lr + coeff * (learning_rate - min_lr) | |
| # logging | |
| if wandb_log and master_process: | |
| wandb.init(project=wandb_project, name=wandb_run_name, config=config) | |
| # HF checkpoint upload function | |
| def upload_checkpoint_to_hf(checkpoint_path, iter_num): | |
| if push_to_hub and master_process: | |
| try: | |
| # Create a unique filename | |
| filename = f"checkpoint_iter_{iter_num}.pt" | |
| file_path = os.path.join(out_dir, filename) | |
| # Copy checkpoint with new name | |
| import shutil | |
| shutil.copy2(checkpoint_path, file_path) | |
| # Upload to HF | |
| api.upload_file( | |
| path_or_fileobj=file_path, | |
| path_in_repo=filename, | |
| repo_id=hf_repo_id, | |
| repo_type="model" | |
| ) | |
| print(f"Uploaded checkpoint to HF: {filename}") | |
| # Clean up local copy | |
| os.remove(file_path) | |
| except Exception as e: | |
| print(f"Failed to upload checkpoint: {e}") | |
| # training loop | |
| print("Starting FREE H200 nano-coder training...") | |
| X, Y = get_batch('train') | |
| t0 = time.time() | |
| local_iter_num = 0 | |
| raw_model = model.module if ddp else model | |
| running_mfu = -1.0 | |
| while True: | |
| # Check time limit | |
| elapsed_time = time.time() - start_time | |
| if elapsed_time > MAX_TRAINING_TIME: | |
| print(f"\n⏰ TIME LIMIT REACHED! Training stopped after {elapsed_time/60:.1f} minutes") | |
| break | |
| # determine and set the learning rate for this iteration | |
| lr = get_lr(iter_num) if decay_lr else learning_rate | |
| for param_group in optimizer.param_groups: | |
| param_group['lr'] = lr | |
| # evaluate the loss on train/val sets and write checkpoints | |
| if iter_num % eval_interval == 0 and master_process: | |
| losses = estimate_loss() | |
| remaining_time = MAX_TRAINING_TIME - elapsed_time | |
| print(f"step {iter_num}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}, time left: {remaining_time/60:.1f}min") | |
| if wandb_log: | |
| wandb.log({ | |
| "iter": iter_num, | |
| "train/loss": losses['train'], | |
| "val/loss": losses['val'], | |
| "lr": lr, | |
| "mfu": running_mfu*100, | |
| "elapsed_time": elapsed_time, | |
| "remaining_time": remaining_time, | |
| }) | |
| if losses['val'] < best_val_loss or always_save_checkpoint: | |
| best_val_loss = losses['val'] | |
| if iter_num > 0: | |
| checkpoint = { | |
| 'model': raw_model.state_dict(), | |
| 'optimizer': optimizer.state_dict(), | |
| 'model_args': model_args, | |
| 'iter_num': iter_num, | |
| 'best_val_loss': best_val_loss, | |
| 'config': config, | |
| } | |
| checkpoint_path = os.path.join(out_dir, 'ckpt.pt') | |
| print(f"saving checkpoint to {out_dir}") | |
| torch.save(checkpoint, checkpoint_path) | |
| # Upload to HF every 200 iterations (frequent for short runs) | |
| if iter_num % 200 == 0: | |
| upload_checkpoint_to_hf(checkpoint_path, iter_num) | |
| if iter_num == 0 and eval_only: | |
| break | |
| # forward backward update | |
| for micro_step in range(gradient_accumulation_steps): | |
| if ddp: | |
| model.require_backward_grad_sync = (micro_step == gradient_accumulation_steps - 1) | |
| with ctx: | |
| logits, loss = model(X, Y) | |
| loss = loss / gradient_accumulation_steps | |
| X, Y = get_batch('train') | |
| scaler.scale(loss).backward() | |
| # clip the gradient | |
| if grad_clip != 0.0: | |
| scaler.unscale_(optimizer) | |
| torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip) | |
| # step the optimizer and scaler | |
| scaler.step(optimizer) | |
| scaler.update() | |
| optimizer.zero_grad(set_to_none=True) | |
| # timing and logging | |
| t1 = time.time() | |
| dt = t1 - t0 | |
| t0 = t1 | |
| if iter_num % log_interval == 0 and master_process: | |
| lossf = loss.item() * gradient_accumulation_steps | |
| if local_iter_num >= 5: | |
| mfu = raw_model.estimate_mfu(batch_size * gradient_accumulation_steps, dt) | |
| running_mfu = mfu if running_mfu == -1.0 else 0.9*running_mfu + 0.1*mfu | |
| remaining_time = MAX_TRAINING_TIME - elapsed_time | |
| print(f"iter {iter_num}: loss {lossf:.4f}, time {dt*1000:.2f}ms, mfu {running_mfu*100:.2f}%, remaining: {remaining_time/60:.1f}min") | |
| iter_num += 1 | |
| local_iter_num += 1 | |
| # termination conditions | |
| if iter_num > max_iters: | |
| break | |
| if ddp: | |
| destroy_process_group() | |
| # Final upload | |
| if push_to_hub and master_process: | |
| upload_checkpoint_to_hf(os.path.join(out_dir, 'ckpt.pt'), 'final') | |
| total_time = time.time() - start_time | |
| print(f"\n🎉 FREE H200 TRAINING COMPLETED!") | |
| print(f"Total training time: {total_time/60:.1f} minutes") | |
| print(f"Total iterations: {iter_num}") | |
| print(f"Final validation loss: {best_val_loss:.4f}") | |
| print(f"Model saved to: {out_dir}") |