Spaces:
Sleeping
Sleeping
| """ | |
| Sampling script for the nano-coder model. | |
| This script loads a trained nano-coder model and generates Python code completions. | |
| """ | |
| import os | |
| import pickle | |
| import torch | |
| import torch.nn.functional as F | |
| from model import GPTConfig, GPT | |
| # Configuration | |
| out_dir = 'out-nano-coder' | |
| start = "def fibonacci(n):\n " # or start with any Python code | |
| num_samples = 5 # number of samples to generate | |
| max_new_tokens = 500 # number of tokens generated in each sample | |
| temperature = 0.8 # 1.0 = no change, lower values make output more focused | |
| top_k = 200 # retain only the top_k most likely tokens, clamp others to have 0 probability | |
| seed = 1337 | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16' | |
| # Load the model | |
| def load_model(): | |
| """Load the trained nano-coder model.""" | |
| # Load the checkpoint | |
| ckpt_path = os.path.join(out_dir, 'ckpt.pt') | |
| if not os.path.exists(ckpt_path): | |
| raise FileNotFoundError(f"Checkpoint not found at {ckpt_path}. Please train the model first.") | |
| checkpoint = torch.load(ckpt_path, map_location=device) | |
| gptconf = GPTConfig(**checkpoint['model_args']) | |
| model = GPT(gptconf) | |
| state_dict = checkpoint['model'] | |
| unwanted_prefix = '_orig_mod.' | |
| for k,v in list(state_dict.items()): | |
| if k.startswith(unwanted_prefix): | |
| state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k) | |
| model.load_state_dict(state_dict) | |
| model.eval() | |
| model.to(device) | |
| return model, checkpoint | |
| def load_vocab(): | |
| """Load the vocabulary from the dataset.""" | |
| data_dir = os.path.join('data', 'python-codes-25k') | |
| meta_path = os.path.join(data_dir, 'meta.pkl') | |
| if not os.path.exists(meta_path): | |
| raise FileNotFoundError(f"Vocabulary not found at {meta_path}. Please run prepare_code_dataset.py first.") | |
| with open(meta_path, 'rb') as f: | |
| meta = pickle.load(f) | |
| return meta['stoi'], meta['itos'] | |
| def encode(text, stoi): | |
| """Encode text to token ids.""" | |
| return [stoi[c] for c in text] | |
| def decode(ids, itos): | |
| """Decode token ids to text.""" | |
| return ''.join([itos[i] for i in ids]) | |
| def generate_code(model, stoi, itos, start_text, max_new_tokens, temperature, top_k): | |
| """Generate code completion.""" | |
| # Encode the start text | |
| start_ids = encode(start_text, stoi) | |
| x = torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...] | |
| # Generate tokens | |
| with torch.no_grad(): | |
| with torch.amp.autocast(device_type='cuda' if device == 'cuda' else 'cpu', dtype=torch.bfloat16 if dtype == 'bfloat16' else torch.float16): | |
| y = model.generate(x, max_new_tokens, temperature=temperature, top_k=top_k) | |
| completion = decode(y[0].tolist(), itos) | |
| return completion | |
| def main(): | |
| print("Loading nano-coder model...") | |
| model, checkpoint = load_model() | |
| stoi, itos = load_vocab() | |
| print(f"Model loaded successfully!") | |
| print(f"Vocabulary size: {len(stoi)}") | |
| print(f"Model parameters: {model.get_num_params()/1e6:.2f}M") | |
| print(f"Context length: {model.config.block_size}") | |
| print(f"Generating {num_samples} samples...") | |
| print(f"Start text: {repr(start)}") | |
| print("-" * 80) | |
| # Set random seed for reproducibility | |
| torch.manual_seed(seed) | |
| # Generate samples | |
| for i in range(num_samples): | |
| print(f"\n--- Sample {i+1} ---") | |
| completion = generate_code(model, stoi, itos, start, max_new_tokens, temperature, top_k) | |
| print(completion) | |
| print("-" * 80) | |
| if __name__ == '__main__': | |
| main() |