Spaces:
Build error
Build error
Upload 2 files
Browse files- 350epochs.pt +3 -0
- yolostreamlit.py +59 -0
350epochs.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d74957f928358205257cad2d295ef9bbee66a4db9678765e9db5a3a567927ca2
|
| 3 |
+
size 22518553
|
yolostreamlit.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import streamlit as st
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from ultralytics import YOLO
|
| 5 |
+
import tempfile
|
| 6 |
+
import os
|
| 7 |
+
import time
|
| 8 |
+
|
| 9 |
+
def main():
|
| 10 |
+
st.title("Gun Detection")
|
| 11 |
+
|
| 12 |
+
video_source_option = st.radio("Select Video Source:", ("Video File", "RTSP Stream", "Webcam"))
|
| 13 |
+
|
| 14 |
+
if video_source_option == "Video File":
|
| 15 |
+
video_file = st.file_uploader("Upload Video", type=["mp4", "avi"])
|
| 16 |
+
if video_file is not None:
|
| 17 |
+
# Create a temporary file to store the uploaded video
|
| 18 |
+
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
|
| 19 |
+
temp_file.write(video_file.read())
|
| 20 |
+
temp_file_path = temp_file.name
|
| 21 |
+
detect_objects(temp_file_path)
|
| 22 |
+
# Remove the temporary file after processing
|
| 23 |
+
os.unlink(temp_file_path)
|
| 24 |
+
|
| 25 |
+
elif video_source_option == "RTSP Stream":
|
| 26 |
+
rtsp_link = st.text_input("Enter RTSP Link:")
|
| 27 |
+
if st.button("Start Detection"):
|
| 28 |
+
detect_objects(rtsp_link)
|
| 29 |
+
|
| 30 |
+
elif video_source_option == "Webcam":
|
| 31 |
+
detect_objects(0)
|
| 32 |
+
|
| 33 |
+
def detect_objects(video_source):
|
| 34 |
+
yolo_model = YOLO('300epochs.pt')
|
| 35 |
+
cap = cv2.VideoCapture(video_source)
|
| 36 |
+
placeholder = st.empty()
|
| 37 |
+
while cap.isOpened():
|
| 38 |
+
ret, frame = cap.read()
|
| 39 |
+
if not ret:
|
| 40 |
+
break
|
| 41 |
+
|
| 42 |
+
# Get predictions
|
| 43 |
+
results = yolo_model(frame)
|
| 44 |
+
|
| 45 |
+
# Draw bounding boxes and labels on the frame
|
| 46 |
+
annotated_frame = results[0].plot()
|
| 47 |
+
|
| 48 |
+
# Convert the annotated frame to RGB (Streamlit uses RGB)
|
| 49 |
+
annotated_frame_rgb = cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB)
|
| 50 |
+
|
| 51 |
+
# Convert the frame to Image
|
| 52 |
+
img_pil = Image.fromarray(annotated_frame_rgb)
|
| 53 |
+
|
| 54 |
+
# Display the frame
|
| 55 |
+
placeholder.image(img_pil, use_column_width=True)
|
| 56 |
+
time.sleep(0.1)
|
| 57 |
+
|
| 58 |
+
if __name__ == '__main__':
|
| 59 |
+
main()
|