import json import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer from jsonformer.format import highlight_values from jsonformer.main import Jsonformer print("Loading model and tokenizer...") model_name = "databricks/dolly-v2-3b" model = AutoModelForCausalLM.from_pretrained(model_name, use_cache=True, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True, use_cache=True) print("Loaded model and tokenizer") def generate(input_prompt, input_schema): try: if not input_prompt: raise ValueError("Prompt is empty") if not input_schema: raise ValueError("JSON Schema is empty") input_schema = json.loads(input_schema) builder = Jsonformer( model=model, tokenizer=tokenizer, json_schema=input_schema, prompt=input_prompt, ) print("Generating...") output_json = builder() return output_json except Exception as e: raise gr.Error(e) examples = [ [ "Generate a json where it is silver Aston Martin DB5 manufactured in 1964", '{\n "type": "object",\n "properties": {\n "car": {\n "type": "object",\n "properties": {\n "make": {\n "type": "string"\n },\n "model": {\n "type": "string"\n },\n "year": {\n "type": "number"\n },\n "colors": {\n "type": "array",\n "items": {\n "type": "string"\n }\n }\n }\n }\n }\n}' ], [ "Generate a person's information based on the following schema. The person is Lionel Messi, aged 26. Messi is a student at Georgia Tech, and take the following courses: Chemistry, Mathematics, and a minor in Japanese.", '{\n "type": "object",\n "properties": {\n "name": {\n "type": "string"\n },\n "age": {\n "type": "number"\n },\n "is_student": {\n "type": "boolean"\n },\n "courses": {\n "type": "array",\n "items": {\n "type": "string"\n }\n }\n }\n}' ], ] css = """ #examples { width: 35rem; } """ with gr.Blocks(css=css) as demo: gr.HTML( """

Jsonformer

Jsonformer: A Bulletproof Way to Generate Structured JSON from Language Models.

Jsonformer generates syntactically correct jsons by constraining/shrinking output space of Language Models.

""" ) with gr.Row(): with gr.Column(scale=1, min_width=600): input_prompt = gr.TextArea("Generate a json where it is silver Aston Martin DB5 manufactured in 1964", label="Prompt", lines=2) input_schema = gr.Code('{\n "type": "object",\n "properties": {\n "car": {\n "type": "object",\n "properties": {\n "make": {\n "type": "string"\n },\n "model": {\n "type": "string"\n },\n "year": {\n "type": "number"\n },\n "colors": {\n "type": "array",\n "items": {\n "type": "string"\n }\n }\n }\n }\n }\n}', label="JSON Schema") generate_btn = gr.Button("Generate") with gr.Column(scale=1, min_width=600): output_json = gr.JSON(label="Generated JSON") ex = gr.Examples(examples=examples, fn=generate, inputs=[input_prompt, input_schema], outputs=output_json, cache_examples=False, elem_id="examples",) ex.dataset.headers = [""] generate_btn.click(fn=generate, inputs=[input_prompt, input_schema], outputs=output_json, api_name="greet") demo.launch()