|
import gradio as gr |
|
import requests |
|
import os |
|
import faiss |
|
import numpy as np |
|
import json |
|
from fastapi import FastAPI, Request |
|
from pydantic import BaseModel |
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
with open("texts.json", "r", encoding="utf-8") as f: |
|
texts = json.load(f) |
|
|
|
index = faiss.read_index("faiss_index.bin") |
|
embed_model = SentenceTransformer("all-MiniLM-L6-v2") |
|
|
|
API_KEY = os.environ.get("OPENROUTER_API_KEY") |
|
MODEL = "qwen/qwen-2.5-coder-32b-instruct:free" |
|
|
|
|
|
def get_context(query, top_k=5): |
|
query_vec = embed_model.encode([query]) |
|
D, I = index.search(np.array(query_vec), top_k) |
|
return "\n".join([texts[i] for i in I[0]]) |
|
|
|
|
|
def chat_fn(message, history): |
|
headers = { |
|
"Authorization": f"Bearer {API_KEY}", |
|
"Content-Type": "application/json" |
|
} |
|
|
|
context = get_context(message) |
|
messages = [{"role": "system", "content": f"You are CODEX Assistant by Mirxa Kamran. Use this context:\n{context}"}] |
|
|
|
for user, assistant in history: |
|
messages.append({"role": "user", "content": user}) |
|
messages.append({"role": "assistant", "content": assistant}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
payload = {"model": MODEL, "messages": messages} |
|
|
|
try: |
|
response = requests.post("https://openrouter.ai/api/v1/chat/completions", headers=headers, json=payload) |
|
response.raise_for_status() |
|
reply = response.json()["choices"][0]["message"]["content"] |
|
except Exception as e: |
|
reply = f"β Error: {e}" |
|
|
|
return reply |
|
|
|
|
|
demo = gr.ChatInterface( |
|
fn=chat_fn, |
|
title="π» CODEX Assistant by Mirxa Kamran", |
|
description="Chat with a context-aware AI code assistant.", |
|
theme="soft" |
|
) |
|
|
|
|
|
app = FastAPI() |
|
|
|
|
|
app = gr.mount_gradio_app(app, demo, path="/") |
|
|
|
|
|
class ChatRequest(BaseModel): |
|
message: str |
|
history: list = [] |
|
|
|
@app.post("/chat") |
|
def api_chat(req: ChatRequest): |
|
reply = chat_fn(req.message, req.history) |
|
return {"response": reply} |
|
|
|
|
|
if __name__ == "__main__": |
|
import uvicorn |
|
uvicorn.run(app, host="0.0.0.0", port=7860) |
|
|