Spaces:
Running
Running
Upload 2 files
Browse files- godraveapp.py +224 -0
- nginx.rtf +13 -0
godraveapp.py
ADDED
|
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""godraveapp.ipynb
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1MHm84PnI1EaofvmNUzaIVeLj7kBB3FL1
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
!pip install gradio pillow
|
| 11 |
+
|
| 12 |
+
import gradio as gr
|
| 13 |
+
from PIL import Image, ImageOps
|
| 14 |
+
import numpy as np
|
| 15 |
+
import os
|
| 16 |
+
import uuid
|
| 17 |
+
|
| 18 |
+
# Ensure there's a directory for outputs
|
| 19 |
+
os.makedirs("outputs", exist_ok=True)
|
| 20 |
+
|
| 21 |
+
def make_square(img, size=3000, fill_color=(0, 0, 0)):
|
| 22 |
+
x, y = img.size
|
| 23 |
+
scale = size / max(x, y)
|
| 24 |
+
new_size = (int(x * scale), int(y * scale))
|
| 25 |
+
# Replace deprecated ANTIALIAS with modern equivalent
|
| 26 |
+
img = img.resize(new_size, Image.Resampling.LANCZOS)
|
| 27 |
+
new_img = Image.new("RGB", (size, size), fill_color)
|
| 28 |
+
new_img.paste(img, ((size - new_size[0]) // 2, (size - new_size[1]) // 2))
|
| 29 |
+
return new_img
|
| 30 |
+
|
| 31 |
+
def blend_images(images):
|
| 32 |
+
if len(images) < 2:
|
| 33 |
+
return "Upload at least two images.", None
|
| 34 |
+
|
| 35 |
+
try:
|
| 36 |
+
# Add error handling for image processing
|
| 37 |
+
processed = []
|
| 38 |
+
for img in images:
|
| 39 |
+
try:
|
| 40 |
+
processed.append(make_square(Image.open(img)))
|
| 41 |
+
except Exception as e:
|
| 42 |
+
return f"Error processing image: {str(e)}", None
|
| 43 |
+
|
| 44 |
+
base = np.array(processed[0]).astype(np.float32)
|
| 45 |
+
|
| 46 |
+
for img in processed[1:]:
|
| 47 |
+
base = (base + np.array(img).astype(np.float32)) / 2
|
| 48 |
+
|
| 49 |
+
final = Image.fromarray(np.uint8(base))
|
| 50 |
+
|
| 51 |
+
# Save to file
|
| 52 |
+
output_path = f"outputs/amalgam_{uuid.uuid4().hex[:8]}.png"
|
| 53 |
+
final.save(output_path)
|
| 54 |
+
|
| 55 |
+
return final, output_path
|
| 56 |
+
except Exception as e:
|
| 57 |
+
return f"Error during blending: {str(e)}", None
|
| 58 |
+
|
| 59 |
+
demo = gr.Interface(
|
| 60 |
+
fn=blend_images,
|
| 61 |
+
inputs=gr.File(file_types=["image"], file_count="multiple", label="Upload 2–5 stills"),
|
| 62 |
+
outputs=[
|
| 63 |
+
gr.Image(label="Blended Image"),
|
| 64 |
+
gr.File(label="Download Image")
|
| 65 |
+
],
|
| 66 |
+
title="Amalgamator",
|
| 67 |
+
description="Upload up to 5 stills. Outputs a 3000x3000 blended image preserving the aesthetic. Save it as PNG below."
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
demo.launch()
|
| 71 |
+
|
| 72 |
+
import gradio as gr
|
| 73 |
+
from PIL import Image, ImageOps
|
| 74 |
+
import numpy as np
|
| 75 |
+
import os
|
| 76 |
+
import uuid
|
| 77 |
+
import random
|
| 78 |
+
from scipy import ndimage
|
| 79 |
+
|
| 80 |
+
# Ensure there's a directory for outputs
|
| 81 |
+
os.makedirs("outputs", exist_ok=True)
|
| 82 |
+
|
| 83 |
+
def make_square(img, size=3000, fill_color=(0, 0, 0)):
|
| 84 |
+
x, y = img.size
|
| 85 |
+
scale = size / max(x, y)
|
| 86 |
+
new_size = (int(x * scale), int(y * scale))
|
| 87 |
+
img = img.resize(new_size, Image.Resampling.LANCZOS)
|
| 88 |
+
new_img = Image.new("RGB", (size, size), fill_color)
|
| 89 |
+
new_img.paste(img, ((size - new_size[0]) // 2, (size - new_size[1]) // 2))
|
| 90 |
+
return new_img
|
| 91 |
+
|
| 92 |
+
def pixel_shuffle(img_array, block_size=10, shuffle_strength=0.5):
|
| 93 |
+
"""Shuffle pixels in blocks to create generative effect"""
|
| 94 |
+
height, width, channels = img_array.shape
|
| 95 |
+
result = np.copy(img_array)
|
| 96 |
+
|
| 97 |
+
# Create blocks for shuffling
|
| 98 |
+
h_blocks = height // block_size
|
| 99 |
+
w_blocks = width // block_size
|
| 100 |
+
|
| 101 |
+
# Create list of block coordinates
|
| 102 |
+
blocks = []
|
| 103 |
+
for i in range(h_blocks):
|
| 104 |
+
for j in range(w_blocks):
|
| 105 |
+
blocks.append((i, j))
|
| 106 |
+
|
| 107 |
+
# Shuffle a percentage of blocks based on strength
|
| 108 |
+
num_blocks_to_shuffle = int(len(blocks) * shuffle_strength)
|
| 109 |
+
blocks_to_shuffle = random.sample(blocks, num_blocks_to_shuffle)
|
| 110 |
+
|
| 111 |
+
# Create a shuffled version of these blocks
|
| 112 |
+
target_positions = blocks_to_shuffle.copy()
|
| 113 |
+
random.shuffle(target_positions)
|
| 114 |
+
|
| 115 |
+
# Perform the shuffling
|
| 116 |
+
for (src_i, src_j), (tgt_i, tgt_j) in zip(blocks_to_shuffle, target_positions):
|
| 117 |
+
src_y, src_x = src_i * block_size, src_j * block_size
|
| 118 |
+
tgt_y, tgt_x = tgt_i * block_size, tgt_j * block_size
|
| 119 |
+
|
| 120 |
+
# Swap blocks
|
| 121 |
+
temp = np.copy(result[src_y:src_y+block_size, src_x:src_x+block_size])
|
| 122 |
+
result[src_y:src_y+block_size, src_x:src_x+block_size] = result[tgt_y:tgt_y+block_size, tgt_x:tgt_x+block_size]
|
| 123 |
+
result[tgt_y:tgt_y+block_size, tgt_x:tgt_x+block_size] = temp
|
| 124 |
+
|
| 125 |
+
return result
|
| 126 |
+
|
| 127 |
+
def flow_distortion(img_array, strength=10):
|
| 128 |
+
"""Apply flow-based distortion to simulate generative models"""
|
| 129 |
+
height, width, channels = img_array.shape
|
| 130 |
+
result = np.zeros_like(img_array, dtype=np.float32)
|
| 131 |
+
|
| 132 |
+
# Create random flow fields for x and y directions
|
| 133 |
+
flow_x = np.random.normal(0, strength, (height, width))
|
| 134 |
+
flow_y = np.random.normal(0, strength, (height, width))
|
| 135 |
+
|
| 136 |
+
# Smooth the flow fields
|
| 137 |
+
flow_x = ndimage.gaussian_filter(flow_x, sigma=30)
|
| 138 |
+
flow_y = ndimage.gaussian_filter(flow_y, sigma=30)
|
| 139 |
+
|
| 140 |
+
# Create meshgrid for coordinate mapping
|
| 141 |
+
y_coords, x_coords = np.meshgrid(np.arange(height), np.arange(width), indexing='ij')
|
| 142 |
+
|
| 143 |
+
# Add flow to coordinates
|
| 144 |
+
x_mapped = x_coords + flow_x
|
| 145 |
+
y_mapped = y_coords + flow_y
|
| 146 |
+
|
| 147 |
+
# Clip to ensure we stay within bounds
|
| 148 |
+
x_mapped = np.clip(x_mapped, 0, width-1)
|
| 149 |
+
y_mapped = np.clip(y_mapped, 0, height-1)
|
| 150 |
+
|
| 151 |
+
# Sample from the original image using the warped coordinates
|
| 152 |
+
for c in range(channels):
|
| 153 |
+
result[:, :, c] = ndimage.map_coordinates(img_array[:, :, c], [y_mapped, x_mapped], order=1)
|
| 154 |
+
|
| 155 |
+
return result
|
| 156 |
+
|
| 157 |
+
def blend_images_with_rearrangement(images, block_size=20, shuffle_strength=0.3, flow_strength=5):
|
| 158 |
+
if len(images) < 2:
|
| 159 |
+
return "Upload at least two images.", None
|
| 160 |
+
|
| 161 |
+
try:
|
| 162 |
+
# Process images
|
| 163 |
+
processed = []
|
| 164 |
+
for img in images:
|
| 165 |
+
try:
|
| 166 |
+
processed.append(make_square(Image.open(img)))
|
| 167 |
+
except Exception as e:
|
| 168 |
+
return f"Error processing image: {str(e)}", None
|
| 169 |
+
|
| 170 |
+
# Convert images to numpy arrays
|
| 171 |
+
img_arrays = [np.array(img).astype(np.float32) for img in processed]
|
| 172 |
+
|
| 173 |
+
# Create a base canvas
|
| 174 |
+
base = np.zeros_like(img_arrays[0])
|
| 175 |
+
|
| 176 |
+
# Divide the images into a grid and randomly select pixels from different images
|
| 177 |
+
height, width, _ = base.shape
|
| 178 |
+
for i in range(0, height, block_size):
|
| 179 |
+
for j in range(0, width, block_size):
|
| 180 |
+
# Get end coordinates for the block
|
| 181 |
+
end_i = min(i + block_size, height)
|
| 182 |
+
end_j = min(j + block_size, width)
|
| 183 |
+
|
| 184 |
+
# Randomly select which image to pull this block from
|
| 185 |
+
source_img = random.choice(img_arrays)
|
| 186 |
+
base[i:end_i, j:end_j] = source_img[i:end_i, j:end_j]
|
| 187 |
+
|
| 188 |
+
# Apply pixel shuffling to the composite image
|
| 189 |
+
base = pixel_shuffle(base, block_size, shuffle_strength)
|
| 190 |
+
|
| 191 |
+
# Apply flow distortion to further randomize
|
| 192 |
+
base = flow_distortion(base, flow_strength)
|
| 193 |
+
|
| 194 |
+
# Blend with original images to preserve some coherence
|
| 195 |
+
for img_array in img_arrays:
|
| 196 |
+
base = base * 0.7 + img_array * 0.3 / len(img_arrays)
|
| 197 |
+
|
| 198 |
+
final = Image.fromarray(np.uint8(np.clip(base, 0, 255)))
|
| 199 |
+
|
| 200 |
+
# Save to file
|
| 201 |
+
output_path = f"outputs/amalgam_{uuid.uuid4().hex[:8]}.png"
|
| 202 |
+
final.save(output_path)
|
| 203 |
+
|
| 204 |
+
return final, output_path
|
| 205 |
+
except Exception as e:
|
| 206 |
+
return f"Error during blending: {str(e)}", None
|
| 207 |
+
|
| 208 |
+
demo = gr.Interface(
|
| 209 |
+
fn=blend_images_with_rearrangement,
|
| 210 |
+
inputs=[
|
| 211 |
+
gr.File(file_types=["image"], file_count="multiple", label="Upload 2–5 stills"),
|
| 212 |
+
gr.Slider(minimum=5, maximum=100, value=20, step=5, label="Block Size (pixels)"),
|
| 213 |
+
gr.Slider(minimum=0.0, maximum=1.0, value=0.3, step=0.05, label="Shuffle Strength"),
|
| 214 |
+
gr.Slider(minimum=0, maximum=20, value=5, step=1, label="Flow Distortion")
|
| 215 |
+
],
|
| 216 |
+
outputs=[
|
| 217 |
+
gr.Image(label="Generated Image"),
|
| 218 |
+
gr.File(label="Download Image")
|
| 219 |
+
],
|
| 220 |
+
title="Amalgamator",
|
| 221 |
+
description="Upload up to 5 stills. Outputs a 3000x3000 image with pixel rearrangement to create a truly generative look."
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
demo.launch()
|
nginx.rtf
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{\rtf1\ansi\ansicpg1252\cocoartf2822
|
| 2 |
+
\cocoatextscaling0\cocoaplatform0{\fonttbl\f0\fswiss\fcharset0 Helvetica;}
|
| 3 |
+
{\colortbl;\red255\green255\blue255;}
|
| 4 |
+
{\*\expandedcolortbl;;}
|
| 5 |
+
\margl1440\margr1440\vieww11520\viewh8400\viewkind0
|
| 6 |
+
\pard\tx720\tx1440\tx2160\tx2880\tx3600\tx4320\tx5040\tx5760\tx6480\tx7200\tx7920\tx8640\pardirnatural\partightenfactor0
|
| 7 |
+
|
| 8 |
+
\f0\fs24 \cf0 gradio\
|
| 9 |
+
pillow\
|
| 10 |
+
numpy\
|
| 11 |
+
opencv-python\
|
| 12 |
+
scipy\
|
| 13 |
+
}
|